Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Unicity of proofs for integer comparisons

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Unicity of proofs for integer comparisons


Chronological Thread 
  • From: Stéphane Glondu <(e29315a54f%hidden_head%e29315a54f)steph(e29315a54f%hidden_at%e29315a54f)glondu.net(e29315a54f%hidden_end%e29315a54f)>
  • To: bertot <(e29315a54f%hidden_head%e29315a54f)Yves.Bertot(e29315a54f%hidden_at%e29315a54f)inria.fr(e29315a54f%hidden_end%e29315a54f)>
  • Cc: Coq Club <(e29315a54f%hidden_head%e29315a54f)coq-club(e29315a54f%hidden_at%e29315a54f)inria.fr(e29315a54f%hidden_end%e29315a54f)>
  • Subject: Re: [Coq-Club] Unicity of proofs for integer comparisons
  • Date: Mon, 14 May 2012 16:14:51 +0200

Le 14/05/2012 15:36, bertot a écrit :
> I have unclear memories of formal proofs that proofs of comparison (not
> equalities) are unique.  More precisely, proofs of the following
> proposition:
> 
> forall n m, forall h1 h2 : le n m,  h1 = h2

This looks like le_unique in the standard library and a FAQ item :-)

And I guess the same would apply for other comparisons (as long as they
don't use negation).


Cheers,

-- 
Stéphane



Archive powered by MHonArc 2.6.18.

Top of Page