coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: t x <txrev319 AT gmail.com>
- To: coq-club <coq-club AT inria.fr>
- Subject: [Coq-Club] minimal inequality proof
- Date: Thu, 10 Oct 2013 13:16:53 -0700
Consider the following code block:
Inductive Nat : Type := | O: Nat | S: forall (n: Nat), Nat. Lemma lem: O <> S O. Proof. intro H. inversion H. Qed. Print lem. (* Is there a simpler proof of this? lem = fun H : O = S O => (fun H0 : S O = S O -> False => H0 eq_refl) match H in (_ = y) return (y = S O -> False) with | eq_refl => fun H0 : O = S O => (fun H1 : O = S O => (fun H2 : False => (fun H3 : False => False_ind False H3) H2) (eq_ind O (fun e : Nat => match e with | O => True | S _ => False end) I (S O) H1)) H0 end : O <> S O *)
I don't find this particularly insightful.
Is there a shorter manually written proof?
- [Coq-Club] minimal inequality proof, t x, 10/10/2013
- Re: [Coq-Club] minimal inequality proof, Robbert Krebbers, 10/10/2013
- Re: [Coq-Club] minimal inequality proof, Geoff Reedy, 10/10/2013
- Re: [Coq-Club] minimal inequality proof, t x, 10/10/2013
- Re: [Coq-Club] minimal inequality proof, gallais, 10/11/2013
- Re: [Coq-Club] minimal inequality proof, Daniel Schepler, 10/11/2013
- Re: [Coq-Club] minimal inequality proof, gallais, 10/11/2013
- Re: [Coq-Club] minimal inequality proof, t x, 10/10/2013
Archive powered by MHonArc 2.6.18.