coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Richard Dapoigny <richard.dapoigny AT univ-savoie.fr>
- To: coq-club <coq-club AT inria.fr>
- Subject: [Coq-Club] having forall in hypotheses
- Date: Thu, 05 Jun 2014 11:32:17 +0200
Class N : Type. Parameter pt : N -> N. (* type of epsilon is N->N->Prop and epsilon' is the flip of epsilon *) Lemma pred_extens : forall (P P' : N -> Prop), (forall n:N, P n <-> P' n) -> P = P'. Lemma Pred_extensional : forall (alpha beta:N->Prop), (forall a:N, alpha a <-> beta a) -> forall phi:(N->Prop)->Prop, (phi alpha <-> phi beta). Lemma MereoT15 : forall B C, epsilon B C /\ epsilon C B -> (forall A, epsilon A B <-> epsilon A C). ... ============================================================== Lemma MereoT17 : forall A B C, isPartOf A B /\ singular_equality B C -> isPartOf A C. Proof. intros A B C H. destruct H. apply MereoT15 with (A:=A) in H0. red. unfold isPartOf in H. apply Pred_extensional with (alpha:=epsilon' B)(beta:=epsilon' C) in H0. =============================================================== From this point, there is a problem when using "apply Pred_extensional with (alpha:=epsilon' B)(beta:=epsilon' C) in H0." because of the "forall a:N" which is within parentheses (it generates a subgoal "forall a : N, epsilon' B a <-> epsilon' C a"). If somebody has an idea how to solve this problem? Thanks in advance, Richard --
|
begin:vcard fn:Richard Dapoigny n:Dapoigny;Richard email;internet:richard.dapoigny AT univ-savoie.fr tel;work:+33 450 09 65 29 tel;cell:+33 621 35 31 43 version:2.1 end:vcard
- [Coq-Club] having forall in hypotheses, Richard Dapoigny, 06/05/2014
Archive powered by MHonArc 2.6.18.