Skip to Content.
Sympa Menu

coq-club - [Coq-Club] proof with nat_ind

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] proof with nat_ind


Chronological Thread 
  • From: Patricia Peratto <psperatto AT vera.com.uy>
  • To: coq-club <coq-club AT inria.fr>
  • Subject: [Coq-Club] proof with nat_ind
  • Date: Wed, 2 Dec 2015 14:37:20 -0300 (UYT)
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=psperatto AT vera.com.uy; spf=Pass smtp.mailfrom=psperatto AT vera.com.uy; spf=None smtp.helo=postmaster AT mail.vera.com.uy
  • Dkim-filter: OpenDKIM Filter v2.9.0 mta05.in.vera.com.uy 8C28A221811
  • Ironport-phdr: 9a23:cnBrMROMhNC8T22pF6gl6mtUPXoX/o7sNwtQ0KIMzox0KPT/rarrMEGX3/hxlliBBdydsKIazbKO+4nbGkU+or+5+EgYd5JNUxJXwe43pCcHRPC/NEvgMfTxZDY7FskRHHVs/nW8LFQHUJ2mPw6anHS+4HYoFwnlMkItf6KuStCU15z//tvx0qOQSj0AvCC6b7J2IUf+hiTqne5Sv7FfLL0swADCuHpCdrce72ppIVWOg0S0vZ/or9Zp9y1buLos8sdBVe32eKExTLoKEjk8OiY+48itqAiLDVDXvjpPGlkRxxFPGk3O6AzwFsP6tTK/ve5g0gGbO9f3RPY6Q2Lxwb1sTUrQgTsdNjU4+Snvh9Z5kL5c6Ea5vARy2YfIfIa9Kvdkd+XWetZcWHsXDZUZbDBIHo7pNthHNOEGJ+sN9NGlqg==

I want to prove (using nat_ind) the following proposition.
I adjoin the proof I have written myself.

Definition aux1b (n:nat) : forall m:nat,
                           forall (e:n=m),S n = S m.
nat_ind (fun n:nat =>
         (forall m:nat, forall e:n=m, S n = S m))

         (fun m:nat, fun e:O=m,
            (f_equal nat nat S O m e))

         (fun p:nat, fun q:(forall m:nat,
              forall e:p = m, S p = S m) =>
              (fun m2:nat =>
                      (fun e2:(S p)=m2 =>
                   (f_equal nat nat S (S p) m2 e2))))
          n.

I have proved it  using "induction" but I want to
find the proof using nat_ind.

I have gotten the following message:

Error: The reference nat_ind was not found in the current environment.

Someone can say me where I'm wrong?

Regards

Patricia




Archive powered by MHonArc 2.6.18.

Top of Page