coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Patricia Peratto <psperatto AT vera.com.uy>
- To: coq-club <coq-club AT inria.fr>
- Subject: [Coq-Club] proof with nat_ind
- Date: Wed, 2 Dec 2015 14:37:20 -0300 (UYT)
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=psperatto AT vera.com.uy; spf=Pass smtp.mailfrom=psperatto AT vera.com.uy; spf=None smtp.helo=postmaster AT mail.vera.com.uy
- Dkim-filter: OpenDKIM Filter v2.9.0 mta05.in.vera.com.uy 8C28A221811
- Ironport-phdr: 9a23:cnBrMROMhNC8T22pF6gl6mtUPXoX/o7sNwtQ0KIMzox0KPT/rarrMEGX3/hxlliBBdydsKIazbKO+4nbGkU+or+5+EgYd5JNUxJXwe43pCcHRPC/NEvgMfTxZDY7FskRHHVs/nW8LFQHUJ2mPw6anHS+4HYoFwnlMkItf6KuStCU15z//tvx0qOQSj0AvCC6b7J2IUf+hiTqne5Sv7FfLL0swADCuHpCdrce72ppIVWOg0S0vZ/or9Zp9y1buLos8sdBVe32eKExTLoKEjk8OiY+48itqAiLDVDXvjpPGlkRxxFPGk3O6AzwFsP6tTK/ve5g0gGbO9f3RPY6Q2Lxwb1sTUrQgTsdNjU4+Snvh9Z5kL5c6Ea5vARy2YfIfIa9Kvdkd+XWetZcWHsXDZUZbDBIHo7pNthHNOEGJ+sN9NGlqg==
I want to prove (using nat_ind) the following proposition.
I adjoin the proof I have written myself.
Definition aux1b (n:nat) : forall m:nat,
forall (e:n=m),S n = S m.
nat_ind (fun n:nat =>
(forall m:nat, forall e:n=m, S n = S m))
(fun m:nat, fun e:O=m,
(f_equal nat nat S O m e))
(fun p:nat, fun q:(forall m:nat,
forall e:p = m, S p = S m) =>
(fun m2:nat =>
(fun e2:(S p)=m2 =>
(f_equal nat nat S (S p) m2 e2))))
n.
forall (e:n=m),S n = S m.
nat_ind (fun n:nat =>
(forall m:nat, forall e:n=m, S n = S m))
(fun m:nat, fun e:O=m,
(f_equal nat nat S O m e))
(fun p:nat, fun q:(forall m:nat,
forall e:p = m, S p = S m) =>
(fun m2:nat =>
(fun e2:(S p)=m2 =>
(f_equal nat nat S (S p) m2 e2))))
n.
I have proved it using "induction" but I want to
find the proof using nat_ind.
I have gotten the following message:
Error: The reference nat_ind was not found in the current environment.
Someone can say me where I'm wrong?
Regards
Patricia
- [Coq-Club] proof with nat_ind, Patricia Peratto, 12/02/2015
- Re: [Coq-Club] proof with nat_ind, Jonathan Leivent, 12/02/2015
- Re: [Coq-Club] proof with nat_ind, Pierre Casteran, 12/02/2015
- Re: [Coq-Club] proof with nat_ind, James Wilcox, 12/02/2015
- Re: [Coq-Club] proof with nat_ind, Emilio Jesús Gallego Arias, 12/02/2015
- Re: [Coq-Club] proof with nat_ind, Dominique Larchey-Wendling, 12/03/2015
Archive powered by MHonArc 2.6.18.