Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] arg-min existential instantiation of an inequality

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] arg-min existential instantiation of an inequality


Chronological Thread 
  • From: David Asher <asher AT informatik.hu-berlin.de>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] arg-min existential instantiation of an inequality
  • Date: Wed, 16 Mar 2016 18:10:12 +0100
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=asher AT informatik.hu-berlin.de; spf=Pass smtp.mailfrom=asher AT informatik.hu-berlin.de; spf=None smtp.helo=postmaster AT mailout1.informatik.hu-berlin.de
  • Ironport-phdr: 9a23:qjy6/BLba95KYP8GatmcpTZWNBhigK39O0sv0rFitYgULvjxwZ3uMQTl6Ol3ixeRBMOAu6IC07Cd4vyocFdDyKjCmUhKSIZLWR4BhJdetC0bK+nBN3fGKuX3ZTcxBsVIWQwt1Xi6NU9IBJS2PAWK8TWM5DIfUi/yKRBybrysXNWC34Lvjavjp9X6WEZhunmUWftKNhK4rAHc5IE9oLBJDeIP8CbPuWZCYO9MxGlldhq5lhf44dqsrtY4q3wD86Fpy8kVWqLjOq88ULZwDTI8Mmlz6te4mwPESF6j72UdXi0/iRpFGUCR5Qr6U43Zsy30sfB40TWbPov2UPU+VC6m7qEtRBK+23RPDCIw7GyC0p84t6lcuh/0/xE=



On 03/16/2016 05:16 PM, Emilio Jesús Gallego Arias wrote:
David Asher
<asher AT informatik.hu-berlin.de>
writes:

Lemma arg_min_inequality : forall x,
(f x < g x) -> (exists x, f x < g x /\
forall y, f y < f x -> f y >= g y).
How does the paper proof look?
It is an indirect proof. My actual proof goal is "forall x,
f(x)>=g(x)". From the opposite assumption "exists x, f(x)<g(x)" plus
the statement that x to be chosen s.t. f(x) is minimal, I can derive a
contradiction.
Umm, as the domain of f is finite you can actually search for the
minimal:

Variable n : nat.
Variable f : 'I_n -> nat.
Variable g : 'I_n -> nat.

Lemma arg_min_U x (f_lt_g : f x < g x) :
exists y, forall z, f y <= f z.
Proof.
exists [arg min_(y < x | true ) f y] => z.
by case: arg_minP => // i _; apply.
Qed.

E.
Thank you. Seems we're on the right track, Abhisheck Anand also proposed to enumerate all values. Can you give me a hint though, how to do this with the on board means of Coq (I'm not familiar with ssreflect).

David.



Archive powered by MHonArc 2.6.18.

Top of Page