Skip to Content.
Sympa Menu

coq-club - Re:[Coq-Club]

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re:[Coq-Club]


Chronological Thread 
  • From: Pierre Casteran <pierre.casteran AT labri.fr>
  • To: coq-club AT inria.fr
  • Subject: Re:[Coq-Club]
  • Date: Wed, 30 Mar 2016 13:31:39 +0200
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=pierre.casteran AT labri.fr; spf=Pass smtp.mailfrom=pierre.casteran AT labri.fr; spf=Pass smtp.helo=postmaster AT iona.labri.fr
  • Ironport-phdr: 9a23:hbSQbR3r4o6KUaOQsmDT+DRfVm0co7zxezQtwd8ZsegSKfad9pjvdHbS+e9qxAeQG96Lu7Qe26GN7OjJYi8p39WoiDg6aptCVhsI2409vjcLJ4q7M3D9N+PgdCcgHc5PBxdP9nC/NlVJSo6lPwWB6kO74TNaIBjjLw09fr2zQd6CyZ7nnLvts7ToICx2xxOFKYtoKxu3qQiD/uI3uqBFbpgL9x3Sv3FTcP5Xz247bXianhL7+9vitMU7q3cY6Lod8JtLVry/dKAlR5RZCi4nOiY7/p7Frx7GGDOO62EGXy09mwFUDhLM6lmuRpb8qDH38OF0wzWXJ8TwZbQ9Uy6jqalxHky7wBwbPiI0pTmEwvd7i7hW9Uqs
  • Organization: LaBRI - Université Bordeaux 1 - France

Hi,

Perhaps you've forgot to assume propositional extensionnality
(defined in Classicalfacts)

Your lemma can be rephrased into :

Require Import ClassicalFacts.
Fact orderbleb : prop_extensionality -> (fun a b : Unit =>
is_true (orderb a b)) = order.

Pierre



Le 30/03/2016 13:12, Benoît Viguier a écrit :
Require Import FunctionalExtensionality.
Require Import Bool.
Require Import Arith.

Definition Unit := nat.
Definition orderb := Nat.leb.
Definition order := le.

Fact orderbleb : (fun a b : Unit =>
is_true (orderb a b)) = order.
Proof.
apply functional_extensionality.
intro a.
apply functional_extensionality.
intro b.
unfold orderb.
unfold is_true.
unfold order.
Check Nat.leb_le.
rewrite Nat.leb_le.



Archive powered by MHonArc 2.6.18.

Top of Page