coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Frédéric Blanqui <frederic.blanqui AT inria.fr>
- To: coq-club AT inria.fr
- Subject: Re: [Coq-Club] CoC vs Cic vs pCiC
- Date: Tue, 21 Mar 2017 09:36:40 +0100
Le 03/20/2017 à 04:03 PM, Brian Milnes
a écrit :
Folks,
I don't think that Thierry's PhD includes inductive types. You
should rather cite: I'm wondering what the right papers are that define the
Calculus of Constructions, the Calculus of Inductive
Constructions and the newest
predicative Calculus of Constructrions.
CoC
Coquand,
Thierry, and Gérard Huet. "The calculus of constructions." Information
and computation 76.2-3 (1988): 95-120.
CiC
Is
it Coquands thesis? 'Une theories des constuctions', 1985.
@INPROCEEDINGS{coquand88colog, BOOKTITLE = {Proceedings of the International Conference on Computer Logic\em, Lecture Notes in Computer Science 417}, YEAR = 1988, TITLE = {\href{http://doi.org/10.1007/3-540-52335-9_47}{Inductively defined types}}, AUTHOR = {T. Coquand and C. Paulin-Mohring}} @INPROCEEDINGS{paulin93tlca, BOOKTITLE = {Proceedings of the 1st International Conference on Typed Lambda Calculi and Applications\em, Lecture Notes in Computer Science 664}, YEAR = 1993, TITLE = {\href{http://doi.org/10.1007/BFb0037116}{Inductive definitions in the system {Coq} - rules and properties}}, AUTHOR = {C. Paulin-Mohring}} @PHDTHESIS{altenkirch93phd, AUTHOR = {T. Altenkirch}, TITLE = {Constructions, inductive types and strong normalization}, SCHOOL = {University of Edinburgh, UK}, YEAR = {1993}} @PHDTHESIS{werner94phd, YEAR = {1994}, SCHOOL = {Universit\'e Paris 7, France}, TITLE = {\href{https://tel.archives-ouvertes.fr/tel-00196524}{Une th\'eorie des constructions inductives}}, AUTHOR = {B. Werner}} But none of these works consider an infinite hierarchy of universes... For this, you can cite: @PHDTHESIS{luo90phd, YEAR = {1990}, SCHOOL = {University of Edinburgh, UK}, TITLE = {\href{http://www.lfcs.inf.ed.ac.uk/reports/90/ECS-LFCS-90-118/}{An extended calculus of constructions}}, AUTHOR = {Z. Luo}} but it only includes pairs and no arbitrary inductive types. pCiC
Is
Coq >= 8 based upon a change called the predicative CiC?
And
if
so, where is it formalized?
Thanks,
Brian
@INPROCEEDINGS{luo92lfcs, AUTHOR = {Z. Luo}, TITLE = {A Unifying Theory of Dependent Types: the Schematic Approach}, BOOKTITLE = {Proceedings of the 2nd International Symposium on Logical Foundations of Computer Science\em, Lecture Notes in Computer Science 620}, YEAR = 1992, YEAR = {10.1007/BFb0023883}} @TECHREPORT{luo92tr2, AUTHOR = {Z. Luo}, TITLE = {A Unifying Theory of Dependent Types: the Schematic Approach}, INSTITUTION = {University of Edinburgh, UK}, YEAR = {1992}, NUMBER = {ECS-LFCS-92-202}} @PHDTHESIS{goguen94phd, YEAR = {1994}, SCHOOL = {Edinburgh University, UK}, TITLE = {\href{http://www.lfcs.inf.ed.ac.uk/reports/94/ECS-LFCS-94-304/}{A typed operational semantics for type theory}}, AUTHOR = {H. Goguen}} But these works do not include the impredicative sort Prop of Coq. |
- [Coq-Club] CoC vs Cic vs pCiC, Brian Milnes, 03/20/2017
- Re: [Coq-Club] CoC vs Cic vs pCiC, Frédéric Blanqui, 03/21/2017
- Re: [Coq-Club] CoC vs Cic vs pCiC, Brian Milnes, 03/21/2017
- Re: [Coq-Club] CoC vs Cic vs pCiC, Frédéric Blanqui, 03/21/2017
Archive powered by MHonArc 2.6.18.