Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Dependent Functional Extensionality

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Dependent Functional Extensionality


Chronological Thread 
  • From: Helmut Brandl <helmut.brandl AT gmx.net>
  • To: coq-club AT inria.fr
  • Subject: [Coq-Club] Dependent Functional Extensionality
  • Date: Mon, 23 Oct 2017 17:08:02 -0500
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=helmut.brandl AT gmx.net; spf=Pass smtp.mailfrom=helmut.brandl AT gmx.net; spf=None smtp.helo=postmaster AT mout.gmx.net
  • Ironport-phdr: 9a23:qQPoFR8WThAFff9uRHKM819IXTAuvvDOBiVQ1KB+1uIcTK2v8tzYMVDF4r011RmSAtWdtqoMotGVmp6jcFRI2YyGvnEGfc4EfD4+ouJSoTYdBtWYA1bwNv/gYn9yNs1DUFh44yPzahANS46tL2HV93a19HsZHgj1HQtzPOX8XIDI3Oqt0OXn25DXZhhUzBCnaLV+KF3irQjVs9QKx4F4I6A9zjPGp2sOfelKkzA7bWmPlgrxs5/jtKVo9D5d7qos

In the standard library of Coq there is an axiom for dependent functional extensionality which can be imported on demand (Coq.Logic.FunctionalExtensionality.html).

I was wondering why the type of the functions has been chosen to be forall a:A, A -> B a instead of forall a:A, B a i.e. the usual dependent product.

Is there any reason to state the axiom with the more complicated type. In my opinion the simpler type should be sufficient.

Regards
Helmut





Archive powered by MHonArc 2.6.18.

Top of Page