coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Pierre-Marie Pédrot <pierre-marie.pedrot AT inria.fr>
- To: coq-club AT inria.fr
- Subject: Re: [Coq-Club] Monoid and Group?
- Date: Thu, 5 Apr 2018 14:56:45 +0200
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=pierre-marie.pedrot AT inria.fr; spf=None smtp.mailfrom=pierre-marie.pedrot AT inria.fr; spf=None smtp.helo=postmaster AT korolev.univ-paris7.fr
- Ironport-phdr: 9a23:nOWvyRMdy8bJwMUcnrwl6mtUPXoX/o7sNwtQ0KIMzox0Iv79rarrMEGX3/hxlliBBdydt6ofzbKO+4nbGkU4qa6bt34DdJEeHzQksu4x2zIaPcieFEfgJ+TrZSFpVO5LVVti4m3peRMNQJW2aFLduGC94iAPERvjKwV1Ov71GonPhMiryuy+4ZLebxlGiTanfb9+MAi9oBnMuMURnYZsMLs6xAHTontPdeRWxGdoKkyWkh3h+Mq+/4Nt/jpJtf45+MFOTav1f6IjTbxFFzsmKHw65NfqtRbYUwSC4GYXX3gMnRpJBwjF6wz6Xov0vyDnuOdxxDWWMMvrRr0yRD+s7bpkSAXwhSkaKTA5/mHZhM9+gq1Vrx2upQBwzpXbYI2JLvdweb/RcN0aSGdHQ81fVzZBAoS5b4YXFeQBPPhXr5Pnp1QQtBewAhOjBPnuyjBWnnD4x7c93Pk7EQHBwAwrAtUDsGzVrNrrLqcSS/66wLDNzTrZdfNW2Cny5JLQch8/vP6MR7VwcdbKxEkuEQPFlFSQppb/MzObzOQAqm6W5PduW+Kojm4osQBxoj63y8cji4nJmoIVyk3f+ilj3Ik1Iti4RUhmatCnCJtdrzyWOo95T884XW1luCk3xqcHtJKmZiQG1Zoqyh3HZ/CafYWF5gjvWPuVLDtimn5od7ayiwyv/UWiy+DxUNS/3kxQoSpfiNbMs2gA1xzN5ciDTftw5kSh2TGV1wDU7uFLP140mbDGK54nw74wiIMfsVzZES/smUX2l62bel8q+uiy8+jnY7PmqYGAN4Jslw3zNqsjltahDek4PQUCRWmW9fmm2LH+80D0Q61GjvgsnanYtJDaK94bpqm8AwJNyoYj6giwDy280NsGhHUHKUhKeAiGj4f3IV3OOO73Auqlg1SrjDdm3PHGPrv7ApXMNHfPirnhfaxl505G1AUz1cxf545TCrwZPP3zXVbxuMXEAR89Lgy72P3qCM5914MbQWKAGLWVMKLUsV+S5+IgOfOAZIEPuGW1F/9w7Pn3yHQ9hFU1fK+z3JJRZmrrMO5hJhChYHf2mNpENG4QvwcJdG3mklqeGWpLZnuoRa954zghCY/gFYrPXIexqL2HxiayWJNMMDMVQmuQGGvlIt3XE8wHbzifd5c4w240EIO5Qopk7imA8Qrzyr5pNO3Ro3VKtJT51dEz6feBzUhupwwxNNyU1iS2d08xhnkBHmdk3aZloEU7xE3RifEl0cwdLsRa4rZyail/NZPYyLYmWdP1QAXFc8nPVVCnXJC+CCswVY13zcVcO0s=
Hi,
On 05/04/2018 01:07, Jason -Zhong Sheng- Hu wrote:
> I am wondering if there is a good support for monoid reasoning and group
> reasoning, namely definitions of structures and corresponding tactics? I
> don't find any from the doc and the source code.
>
>
> I kind of find it strange jumping to support semiring, ring and field
> without supporting two more common and basic structures. Especially
> monoid is observably everywhere, and I dream to have tactics like
> monoid, monoid_simplify to ease my life.
>
>
> Or is there anyone has written a library for reasoning of these two
> structures?
There used to be a dedicated library called aac-tactics for rewriting up
to associativity and commutativity :
https://github.com/coq-contribs/aac-tactics
This is precisely what you need for groups and monoids. Unluckily, I
think it is currently unmaintained.
Otherwise, you can probably try to fiddle with the relation-algebra
library, which AFAIU superseded aac-tactics.
https://github.com/damien-pous/relation-algebra
They have a set of tactics for richer settings like Kleene algebras, but
you might manage to use it for monoids and the like.
Cheers,
PMP
Attachment:
signature.asc
Description: OpenPGP digital signature
- [Coq-Club] Monoid and Group?, Jason -Zhong Sheng- Hu, 04/05/2018
- Re: [Coq-Club] Monoid and Group?, Pierre-Marie Pédrot, 04/05/2018
- <Possible follow-up(s)>
- Re: [Coq-Club] Monoid and Group?, makarius, 04/05/2018
Archive powered by MHonArc 2.6.18.