coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Laurent Thery <Laurent.Thery AT inria.fr>
- To: coq-club AT inria.fr
- Subject: Re: [Coq-Club] How to construct this simple proof term with tactics?
- Date: Mon, 16 Apr 2018 14:21:00 +0200
- Autocrypt: addr=thery AT sophia.inria.fr; prefer-encrypt=mutual; keydata= xsBNBE3a3V8BCADTeORKU7I7UmBBcs4VhSCq1IgKD8vdmdrGAlF3IJSFng7Fk8+MgS2gWYcS Ukf5t+rjNM3Z6brfYXc1naZlf2JPGHvAGiz8+TkXL+/ZA6+gAoIKy/iKyD+hCD8m92WH3rPH vCX6EJ44FEI7gUJ37GlTjvuP0I55vaFcwEg8nDgkALaCJvrSHtePuPKR1Q+9q2dgR7fTObal HYGMAsgT6k6n2ofe4Q6VFRLJhruU02qAfV5zgIoa3xgrTwSr4RRDILHttAw7EN6aLG6JycJ7 sPsPsiQzrd/tFsNbiHYeojJCkU2pDSQ3pBtXAJL/z2pMWTeTXvA60l9w0sDO7M3mkC3vABEB AAHNJ0xhdXJlbnQgVGjDqXJ5IDxMYXVyZW50LlRoZXJ5QGlucmlhLmZyPsLAeAQTAQIAIgUC TdrdXwIbAwYLCQgHAwIGFQgCCQoLBBYCAwECHgECF4AACgkQHHaWvRTi0tpIgggAnSUYcU2N uchXkGGwmPuLmvSUMiLkyFPs9GF2YF1ONOuJtpnQMcpsseCkcmIjESz0h5OpknpyraUXvbh0 ZdFqaLC2E+GyV8/YQi71wSsTPgWP450u0XUt0ysjwkKW6aIxIhSzrtgNp4E6w5KzXVJxA/yM V5RNFHg/5uifgfv4b7xaGHV8L93NbSvedk1O7yje5Hqgfab0t6J5Kf0M3sG+pB3gEkDVK9B7 +0fhe7/5u1Nj5HoLWid8UNZfFzJzb18Xe2ckzNye0KdDtQFac8qGUzhLbEYt3ScYjRYTq9/d V4Cin39j7Oo64Nk71iiLBISyuk0Q9D+Jq7nwwcQr/R8s1s7ATQRN2t1fAQgA7H6aX6BfdO/X Vlf4EGEoyFQ5u/JDe+giIHWSS34YWDWVUYyp320CrAYAkh9lQ1Nvh1tsmgiUh5xnY7wY0tOi wJSm94XlYAmHrddmWVNXRn09GvZJhfI2LdVBg3oxPfc8+bV+Hz83z/5BMPLOogxB22QMPJ6e iD2EsUMPNsuCVQ8WNo6ZmueuuYe7vEUXLYdRXNumJJgekEuG/q1BD4xgfzWpWfUODm6WygWZ oov50DomcDcAHW03bgnHlqnYu20Qg00GqgR3FKlORTvnOxD5TMCXe+eLUxkQfvnjbIPhtrnJ hgJMKVkRBEoaQ/XA4FdvxloInYPbqxNZ72yd09BbewARAQABwsBfBBgBAgAJBQJN2t1fAhsM AAoJEBx2lr0U4tLaWNQH/2/fIaF9ngbKPBJbDxYa7glJuCfamJgy3R8mJ//VYsS4RbdroSX3 29EgWlTx2reu1b4C5n5k7l4KpLgsRIc3bLUasGv15nf8BqmKIMulidzsxJv86S2imY/0870Q NOiO9SElHE7/2q4J1m2ew77SegiqGVWHl6Zs+4ROfOILTy24o26BQMAZhPX7jEs04Atv6yjw OUIPbzFO+XRuKqkBwHn9S8+GQelT0Gh84Dc5D2jIF0+kWY7uHqe2O+2LPfgO2CYhqmVfr/Ym mZv2xUyhJ7gui2hYaggncQ96cM2KhnKlgMw8nStY0GTqVXLEjPYblz8mqtF8aBPRSk/DjjrF QeI=
- Openpgp: preference=signencrypt
On 04/16/2018 02:12 PM, Soegtrop, Michael wrote:
> But what I am looking for is a more conventional tactics based way to do
> this
>
The goal math the conclusion of the assumption H so apply H can be used.
Then using right and left that let you select which part of disjunction
you want to prove, you should made it.
In summary with apply H, intro, right, left and exact you should make it ;-)
--
Laurent
- [Coq-Club] How to construct this simple proof term with tactics?, Soegtrop, Michael, 04/16/2018
- Re: [Coq-Club] How to construct this simple proof term with tactics?, Jean-Francois Monin, 04/16/2018
- RE: [Coq-Club] How to construct this simple proof term with tactics?, Soegtrop, Michael, 04/16/2018
- Re: [Coq-Club] How to construct this simple proof term with tactics?, Laurent Thery, 04/16/2018
- Re: [Coq-Club] How to construct this simple proof term with tactics?, Gaëtan Gilbert, 04/16/2018
- Re: [Coq-Club] How to construct this simple proof term with tactics?, Jean-Francois Monin, 04/16/2018
Archive powered by MHonArc 2.6.18.