Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Existential variables or holes in Lemma types

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Existential variables or holes in Lemma types


Chronological Thread 
  • From: Pierre Courtieu <pierre.courtieu AT gmail.com>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] Existential variables or holes in Lemma types
  • Date: Wed, 16 May 2018 21:58:28 +0200
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=pierre.courtieu AT gmail.com; spf=Pass smtp.mailfrom=pierre.courtieu AT gmail.com; spf=None smtp.helo=postmaster AT mail-ot0-f181.google.com
  • Ironport-phdr: 9a23:1w1KoxMSV/BFBEj/w2Il6mtUPXoX/o7sNwtQ0KIMzox0LfT+rarrMEGX3/hxlliBBdydt6ofzbKO+4nbGkU4qa6bt34DdJEeHzQksu4x2zIaPcieFEfgJ+TrZSFpVO5LVVti4m3peRMNQJW2aFLduGC94iAPERvjKwV1Ov71GonPhMiryuy+4ZLebxlGiTanfb9+MAi9oBnMuMURnYZsMLs6xAHTontPdeRWxGdoKkyWkh3h+Mq+/4Nt/jpJtf45+MFOTav1f6IjTbxFFzsmKHw65NfqtRbYUwSC4GYXX3gMnRpJBwjF6wz6Xov0vyDnuOdxxDWWMMvrRr0yRD+s7bpkSAXwhSgIOT428mHZhMJzgqxGvhyuuwdyzJTIbIyPLvdyYr/RcNEcSGFcXshRTStBAoakYoUVDuoOI/xYr5PjqFATsxa+AhSsBPnzyj9JmHD2wLAx3uM5EQHHwgMgBcgOv2rOoNrpM6cSTPq1zLXJzTrdcvNbwjj96I3SfRAgpfGAR65/cc3UyUQ2EQ7Ok1ueqYvgPzyP1+QNtXCW7+hnVe21l2EnqwBxoj22ysg3kInGmIMVykzC9Spn2oY5P8C3R1B9bNW5E5VQrzmXOol5T884Xm1kpiY3xqcFtJKlZiQG1ZcqywPZZveaaYaH+AjjW/yUITpghHJqZra/hxGq/Eil0OL8V8203E9NripZjtXAr34N2wHQ58SaUPd98UCh2TGA1wDX9O5IO1w7la3eK5I5w74wkIQcsVjbEyL0l0j6lrKaelsk9+Sy6OnrfK/qqoKfOoNpkg3+N74hms27AeQ2KAgOWG2b9Pyk1L3i40L5Wq9KgeMsnqbFt5DaON4bprK4AwBLz4Yu8Bm/DzK839QZmXkLNk5KeBWCj4TxIVHBPOj4Deujg1SriDpk2/fGPqT4DprRKnjDjazucK1m609czQoz1cpQ64hVCrEHOvLzW1X+uMbWDh8jYESIxLPsD8w43YcDU0qOBLWYOeXcqwym/OUqdtGNaZUPtX7WLOU/+//jkDdtgV4QZ7Okm5AQdWqkH/l7C0qcaHvoxNwGFDFZ7UIFUOX2hQjaAnZobHGoUvdkv2BpOMedFY7GA7uVrvmE1Sa/EIdRYzkfWF+JGHbsMY6DXqVVMX7AEopaijUBEIOZZco5zxj37V31zrNmKqzf/ShK7cu+hugw3PXakFQJzRIxD8mZ1DvTHWR9n2dNQCNuma4m8RU7xVCE3qx1xfdfEI4L6g==

Le mer. 16 mai 2018 à 18:31, Joachim Breitner <mail AT joachim-breitner.de> a écrit :

> 3) the shape of this "functional scheme" is probably not accepted by
> "induction ... using foo_ind". Does it? Or do you have to apply the
> principle by hand?

Right now I use

    revert e captured.
    apply go_ind.

in my lemma (e and captured are the actual parameters to my function
go); changing that to

    induction e, captured using go_ind.

gives me “Cannot recognize an induction scheme.”. So far I am happy
with apply; how would I have to change the lemma so that [induction]
works,

The presence of (f x) (à la functional scheme) and WellFormed (à la inductive type) simultaneously in the principle is not supported currently by induction/elim . This could be a feature wish I guess.

and what would I gain from it?

Induction has a few features that make it a bit more shiny than basic standard apply. For instance it supports “as”, it performs substitution in hyps, it names induction hyps differently etc. See the documentation of induction. Nothing crucial but still useful most of the time.

P




Cheers,
Joachim

--
Joachim Breitner
  mail AT joachim-breitner.de
  http://www.joachim-breitner.de/



Archive powered by MHonArc 2.6.18.

Top of Page