Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Coq Standard Library Requests

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Coq Standard Library Requests


Chronological Thread 
  • From: Larry Darryl Lee <llee454 AT gmail.com>
  • To: "coq-club AT inria.fr" <coq-club AT inria.fr>
  • Subject: [Coq-Club] Coq Standard Library Requests
  • Date: Thu, 23 Aug 2018 10:50:49 -0400
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=llee454 AT gmail.com; spf=Pass smtp.mailfrom=llee454 AT gmail.com; spf=None smtp.helo=postmaster AT mail-qt0-f181.google.com
  • Ironport-phdr: 9a23:2T86nxJHy53JyciMaNmcpTZWNBhigK39O0sv0rFitYgRLvjxwZ3uMQTl6Ol3ixeRBMOHs60C07KempujcFRI2YyGvnEGfc4EfD4+ouJSoTYdBtWYA1bwNv/gYn9yNs1DUFh44yPzahANS47xaFLIv3K98yMZFAnhOgppPOT1HZPZg9iq2+yo9JDffwdFiCChbb9uMR67sRjfus4KjIV4N60/0AHJonxGe+RXwWNnO1eelAvi68mz4ZBu7T1et+ou+MBcX6r6eb84TaFDAzQ9L281/szrugLdQgaJ+3ART38ZkhtMAwjC8RH6QpL8uTb0u+ZhxCWXO9D9QLYpUjqg8qhrUgflhiQaOTA57m/ZhNB/gqVUrxyuvBF/343ZbZuJOPdkYq/Qf9UXTndBUMZLUCxBB5uxYY0VAOobJ+ZZr5T2qVUUohukHwmtBOfvwSJOiHDow6IxzuMsEQXC3AM+Ad0Dv3TZodruOacdVOC61qjIzTHZY/xK3jf97ZHFfxY8qv+PRbJ9adTdxVUrGg/fjVidqZbpMy2I2ukMqWSX8ultWf+3h2I5tw18piKjy8Yth4XTgo8YxUrI+Cd2zYszONa2UlR0YcS+H5tVryyaN5V5QsclQ2xwvSY10LwGuZqicCgT1JQr2wfTa/Kaf4WL/x7vTumRITB/hHJqfLKwmQy+/lSnyu35TsW00VBKoTRZktTUqHwByxje5tKER/Z95EutxyuD2gHJ5u1ZIk04iLLXK5s7zb4xkpoTv17DHijzmEjuiK+Wclsr9fan5unnbbjrvZCcN4puhQH/NqQigNCwAeM9MgQWRWiU5fy81KH//U3+WLhFkvo2krDAvJ/GIcQbu7W2DhRO0ocj7ha/Fy2p3M4ZnXkBNlJFeQiIg5LnO1HUc7jECqL1iFO11Txv2vruP7v7A5yLIGKJ2OPqeq844EpBwiIyy8pe7tRaEOdSDuj0XxrVvcbCH1cVOhau0uKvLNhwntcaXW+CXvLFGKzXuF6MoOkoJr/fN8cupD/hJq19tLbVhngjlApFJPj77d4scHm9W89eDQCcaHvojM0GFD5T7AU7Re3uzlaFVGwKPirgb+cH/jg+TbmeI8LbXIn02e6O2S66GttdYWUUUgnRQ0etTJ2NXrI3UAzXIsJllWZaB72oSotkzA328QGjm+MhIe3T9SkV85nk0Yot6g==

Hi,

I recently worked on a small project and noticed that the List library
within the Coq Standard library is missing two obvious proofs.

First, the List library defines a proof `Forall_impl` that has an
obvious analog for the `Exists` predicate.

Second, the List library defines a proof `Forall_inv` that applies to
the head of a list, but lacks the obvious analogue for the tail of a
list.

I'd like to propose adding two proofs to the Standard List library. The
first, is a proof `Exists_impl` which fills the gap left by
`Forall_impl`:

    (**
      Accepts two predicates, [P] and [Q], and a
      list, [xs], and proves that, if [P -> Q],
      and there exists an element in [xs] for which
      [P] is true, then there exists an element in
      [xs] for which [Q] is true.
    *)
    Definition Exists_impl
      :  forall (A : Type) (P Q : A -> Prop),
         (forall x : A, P x -> Q x) ->
         forall xs : list A,
           Exists P xs ->
           Exists Q xs
      := fun _ P Q H xs H0
           => let H1
                :  exists x, In x xs /\ P x
                := proj1 (Exists_exists P xs) H0 in
              let H2
                :  exists x, In x xs /\ Q x
                := ex_ind
                     (fun x H2
                       => ex_intro
                            (fun x => In x xs /\ Q x)
                            x
                            (conj
                              (proj1 H2)
                              (H x (proj2 H2))))
                     H1 in
              (proj2 (Exists_exists Q xs)) H2.

    Arguments Exists_impl {A} {P} {Q} H xs H0.

The second is a proof `Forall_inv_tail` that fills the gap left by
`Forall_inv`. It's proof is similarly easy:

    (**
      Accepts a predicate, [P], and a list, [x0 ::
      xs], and proves that if [P] is true for every
      element in [x0 :: xs], then [P] is true for
      every element in [xs].
    *)
    Definition Forall_inv_tail
      :  forall (A : Type) (P : A -> Prop) (x0 : A) (xs : list A),
    Forall P (x0 :: xs) -> Forall P xs
      := fun _ P x0 xs H
           => let H0
                :  forall x, In x (x0 :: xs) -> P x
                := proj1 (Forall_forall P (x0 :: xs)) H in
              let H1
                :  forall x, In x xs -> P x
                := fun x H2
                     => H0 x (or_intror (x0 = x) H2) in
              proj2 (Forall_forall P xs) H1.

    Arguments Forall_tail {A} {P} x0 xs.

At the moment, I've defined these proofs in a small personal library
that I include in most of my projects, but I'd like to see these
obvious extensions included in the Standard Library one day.

Who should a I propose these additions to? What are the rules for
adding theorems to the Coq Standard Library?

- Larry Lee



Archive powered by MHonArc 2.6.18.

Top of Page