coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Gaëtan Gilbert <gaetan.gilbert AT skyskimmer.net>
- To: coq-club AT inria.fr
- Subject: Re: [Coq-Club] proving a lemma in a proof
- Date: Wed, 23 Jan 2019 09:36:40 +0100
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=gaetan.gilbert AT skyskimmer.net; spf=Pass smtp.mailfrom=gaetan.gilbert AT skyskimmer.net; spf=None smtp.helo=postmaster AT relay3-d.mail.gandi.net
- Ironport-phdr: 9a23:8FaqLhGxU2HsJ9JxMtqY2Z1GYnF86YWxBRYc798ds5kLTJ7zpsqwAkXT6L1XgUPTWs2DsrQY07qQ6/iocFdDyK7JiGoFfp1IWk1NouQttCtkPvS4D1bmJuXhdS0wEZcKflZk+3amLRodQ56mNBXdrXKo8DEdBAj0OxZrKeTpAI7SiNm82/yv95HJbAhEmDmwbaluIBmqsA7cqtQYjYx+J6gr1xDHuGFIe+NYxWNpIVKcgRPx7dqu8ZBg7ipdpesv+9ZPXqvmcas4S6dYDCk9PGAu+MLrrxjDQhCR6XYaT24bjwBHAwnB7BH9Q5fxri73vfdz1SWGIcH7S60/VDK/5KlpVRDokj8KOSMn/mHZisJ+j6xVrxyuqBN934Hab5qYNOZ9c67HYd8WWWRMU8RXWidcAo28dYwPD+8ZMOhZtYb6u0cOogG4BQa0Be3vyztIiWTo0q0gz+QqDAbL3AM6EN0QrHTbttP1OL0dUeC0yKnH1ivMb+lK2Trm84jIcRAgoeqPXbJxdMrRzFcgFxnfglWWt4PlIyqY2+IQuGaV6OpgUPigi28hqwxpozivwNsshZfNho4P11/L6yN0y5s2K92gUEN3f8OoHZlKuyyYK4d6WN4uTmJmtSog17ELvZ62cDAUxJg6yRPTceGLfoiW7h75SeqcICl0iGhmdb+wgRu57FKuxffmVsau1VZHtipFncfItnAKzxHT8NaISv9n8Uah1zuDzh3c5vtBIU8ulKrbL4QtwrEqmZoVrEvDHzX6mEPog6+Kbkkk++6o5Pr7Yrj+uJOQKo15hhv8P6gygMCzHOc1PwYUU2SG/emx1KXv/UjjT7VLiv02nLPZsJffJckDqa62GRFa0po55Ba5FTum39UYnX0cI11bYhKHk5PkO0rNIPH4Fve/gFWskDJux//YJL3tGJPNIWbfkLv5Z7Zy91ZcyBYvzdBY/59bFrYBIOvqVkDtsNzYEwQ2Phevw+fnDdV9zpkRVXiOAq+fKqPSsEWH6vghI+mWN8cpv2P2LOFg7Przh1c4n0UcdO+nx8g5cne9S9tvoFmQZ03Dg9MLHH0W9l4xReH2gVvEXj9XbXuoQ4on5SAgC4OjCIrZAIagnOrSj2+AApRKazUeWRi3GnDyetDcAqZeWGepOsZk1wc8e/2kQo4l2wupsVakmaFkP/HX+ygduIil0tVptbSKyUMCsAdsBsHY6FmjCnlulzpWFSQ1zbt8oEl4x03F16Vk0aQBSI5joshRWwJ/Dqbyiux3D9eoB1Dbc9OAWQ3jTpOjCDA1CN04xdMPJUBwB4f6gw==
What's the local context? It sounds like the following, however that doesn't work:
Set Nested Proofs Allowed.
Lemma fo (n:nat) : Prop.
Proof.
Lemma ba : n = n.
Gaëtan Gilbert
On 23/01/2019 08:53, Soegtrop, Michael wrote:
Dear Maxime,
if I remember right, we had a discussion on the topic during the Coq
Implementers Workshop in Nice last year. I think you said that the main
difficulty with nested proofs is that they may depend on the local context
(the context of the outer proof). I also use nested proofs frequently, but I
don't use nested proofs which depend on the local context, that is which
could not be moved in front of the outer lemma. Since Andrew said he usually
moves the proofs outside eventually, I guess he also doesn't use nested
lemmas which depend on the local context. Maybe Adam and other friends of
this feature can comment on their usage.
In cases others agree to this, would it be an option to remove support for
nested lemmas which depend on the current context? I don't see how this would
be in any way more complicated than parallel proofs - essentially it should
be the same. Also I think removing the feature that a nested lemma can depend
on the outer proof's context would be even an advantage, because I would
think most people who use this feature use it accidentally and not willingly.
Best regards,
Michael
Intel Deutschland GmbH
Registered Address: Am Campeon 10-12, 85579 Neubiberg, Germany
Tel: +49 89 99 8853-0, www.intel.de
Managing Directors: Christin Eisenschmid
Chairperson of the Supervisory Board: Nicole Lau
Registered Office: Munich
Commercial Register: Amtsgericht Muenchen HRB 186928
- [Coq-Club] proving a lemma in a proof, Jeremy Dawson, 01/22/2019
- Re: [Coq-Club] proving a lemma in a proof, Théo Zimmermann, 01/22/2019
- Re: [Coq-Club] proving a lemma in a proof, Adam Chlipala, 01/22/2019
- Re: [Coq-Club] proving a lemma in a proof, Andrew Appel, 01/22/2019
- Re: [Coq-Club] proving a lemma in a proof, Maxime Dénès, 01/22/2019
- Re: [Coq-Club] proving a lemma in a proof, Jim Fehrle, 01/22/2019
- RE: [Coq-Club] proving a lemma in a proof, Soegtrop, Michael, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Gaëtan Gilbert, 01/23/2019
- RE: [Coq-Club] proving a lemma in a proof, Soegtrop, Michael, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Enrico Tassi, 01/24/2019
- Re: [Coq-Club] proving a lemma in a proof, Jan Bessai, 01/24/2019
- Re: [Coq-Club] proving a lemma in a proof, Enrico Tassi, 01/25/2019
- Re: [Coq-Club] proving a lemma in a proof, Adam Chlipala, 01/24/2019
- RE: [Coq-Club] proving a lemma in a proof, Soegtrop, Michael, 01/25/2019
- RE: [Coq-Club] proving a lemma in a proof, Soegtrop, Michael, 01/25/2019
- Re: [Coq-Club] proving a lemma in a proof, Enrico Tassi, 01/25/2019
- RE: [Coq-Club] proving a lemma in a proof, Soegtrop, Michael, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Adam Chlipala, 01/25/2019
- RE: [Coq-Club] proving a lemma in a proof, Soegtrop, Michael, 01/25/2019
- Re: [Coq-Club] proving a lemma in a proof, Gaëtan Gilbert, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Adam Chlipala, 01/22/2019
- Re: [Coq-Club] proving a lemma in a proof, Théo Zimmermann, 01/22/2019
Archive powered by MHonArc 2.6.18.