coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: "Soegtrop, Michael" <michael.soegtrop AT intel.com>
- To: "coq-club AT inria.fr" <coq-club AT inria.fr>
- Subject: RE: [Coq-Club] Tactic for commutative group?
- Date: Wed, 7 Aug 2019 11:01:26 +0000
- Accept-language: de-DE, en-US
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=michael.soegtrop AT intel.com; spf=Pass smtp.mailfrom=michael.soegtrop AT intel.com; spf=None smtp.helo=postmaster AT mga18.intel.com
- Dlp-product: dlpe-windows
- Dlp-reaction: no-action
- Dlp-version: 11.2.0.6
- Ironport-phdr: 9a23:OmkDjhJriiACZWjpPNmcpTZWNBhigK39O0sv0rFitYgeIvrxwZ3uMQTl6Ol3ixeRBMOHsqgC0rOM+Pu7EUU7or+5+EgYd5JNUxJXwe43pCcHRPC/NEvgMfTxZDY7FskRHHVs/nW8LFQHUJ2mPw6arXK99yMdFQviPgRpOOv1BpTSj8Oq3Oyu5pHfeQpFiCejbb9oMRm6sBvdusYYjIZsN6081gbHrnxUdupM2GhmP0iTnxHy5sex+J5s7SFdsO8/+sBDTKv3Yb02QaRXAzo6PW814tbrtQTYQguU+nQcSGQWnQFWDAXD8Rr3Q43+sir+tup6xSmaIcj7Rq06VDi+86tmTgLjhSEaPDA77W7XkNR9gqJFrhy8uxxxzY3aYI+XO/p/YqzScsgXSnBdUstVTSFNHp+wYokJAuEcPehYtY79p14WoBewGAesA/3gyjBUhn/s2q06y/wtGhzB0gwhA90OsG7bo8vxNKscTOu4y6zIzTTfYPNWwzjy9ozIfgo6ofGLQ71wftbRyVMoFwPdlViQqIrlPy+L2eQJqWSU8+1gVee2hmMhtgp/rD+vxsI2hYnIgIIY0l/E9SRlwIY1ON23U1R3bsKjEJtVry2aNo12Qt88TGFsoio116MJtJimdyYJ0JQq3wPTZvKIfoSS/x7uWumcLS1liH9reb+znQu+/Vahx+HkS8W50VhHojBLn9TCrHwByRLe58ydRvdg/UqtxC6D2x3S5+xAO0w4i6rWJpE7zrIujJYesUDOEynrk0vslqCWbF8r+u2w5uTnfLrmopicOpdxigHxKKsih8+yDf45MggIQ2iU5+C82Kf/8k3+RbVGlvw2kq/Hv5DGPckXu6C0DgBP3oo+5RuyAC2q3MkWkHQGNl5JZQyLgonxN1HLOv/4DPO/g1q2kDdswvDLJrjhApTRIXjDirjuY7J951RHyAo0099f6I5UCqsGIPLrQULxtdrYDgMnPAyw2eroFNJ91oYGVWKVHqCZKL/SsUOP5u83P+aMY5YVtC/hJPgh+v7hlmQ0mUQdfKmsxZsYcmq0HvVgI0WDYHrjmM0NEWkQvll2cOu/wlaFSHtYY2u4d6M6/DAyToy8R8+XTYe0xbeFwS2TH5tMZ2kABEraQlnycIDREcwLZS2OOMh51nQhVLOhQoIln1n6sQ7xy7NqKqzP/SAXqYjkzPB04fHekVc58jkiXJfV6H2EU2whxjBAfDQxxq0q+RUsmGfG6rBxhrljLfIW4vpIVgkgMpuFlr57Dcz/XkTKedLbEQ/6EOXjOik4S5cK+/FLe1x0Qozwjxbf0i7sCLgQxeTSWc4Et5nE1n20HP5TjnbL0K540AsjTcIWZSungLJy807YAIuby0g=
Dear Qinxiang,
> I am wondering, if I want to prove something for a user-defined commutative group > (its like we have zero, addition and subtraction but not multiplication), is there any > proof automation I can use?
I am using the aac-tactics plugin for this:
https://github.com/coq-community/aac-tactics
Although it advertises to only support associativity and commutativity, it can work with inverse elements by explicit rewriting for the inverse. But handling inverses is not fully automated as commutativity and associativity are. See e.g. the first example in:
https://github.com/coq-community/aac-tactics/blob/master/theories/Tutorial.v
Best regards,
Michael Intel Deutschland GmbH |
- [Coq-Club] Tactic for commutative group?, Cao Qinxiang, 08/07/2019
- RE: [Coq-Club] Tactic for commutative group?, Soegtrop, Michael, 08/07/2019
- Re: [Coq-Club] Tactic for commutative group?, Cao Qinxiang, 08/08/2019
- RE: [Coq-Club] Tactic for commutative group?, Soegtrop, Michael, 08/07/2019
Archive powered by MHonArc 2.6.18.