Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Logical implication between two identical forall

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Logical implication between two identical forall


Chronological Thread 
  • From: Gaëtan Gilbert <gaetan.gilbert AT skyskimmer.net>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] Logical implication between two identical forall
  • Date: Tue, 1 Oct 2019 10:10:02 +0200
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=gaetan.gilbert AT skyskimmer.net; spf=Pass smtp.mailfrom=gaetan.gilbert AT skyskimmer.net; spf=None smtp.helo=postmaster AT relay11.mail.gandi.net
  • Ironport-phdr: 9a23:cSE3mxZlWfksaqZqmL35Lvn/LSx+4OfEezUN459isYplN5qZr8+6bnLW6fgltlLVR4KTs6sC17ON9fy7EjVaut6oizMrSNR0TRgLiMEbzUQLIfWuLgnFFsPsdDEwB89YVVVorDmROElRH9viNRWJ+iXhpTEdFQ/iOgVrO+/7BpDdj9it1+C15pbffxhEiCCybL9vIhi6twrcu8cZjYd/NKo8xAbCr2dVdehR2W5mP0+YkQzm5se38p5j8iBQtOwk+sVdT6j0fLk2QKJBAjg+PG87+MPktR/YTQuS/XQcSXkZkgBJAwfe8h73WIr6vzbguep83CmaOtD2TawxVD+/4apnVAPkhSEaPDM/7WrZiNF/jLhDrRy8uRJ/zY7aboKbOvVwcazSf88VS2VaU8ZNVCFMGJ+wY5cBAucDO+tTsonzp0EJrRu7HQSiBfngzSNUhnDs2601y+UvEQDC3AM7Ad0OqmjUp8jyOacdS++60rXIwi/Fb/9M1jf96YzIfQs/rvGWQbJ9atHRyUovFgPejVWQqInlPzaL2eQXqWSb6fRvVf62hmMhtgp/rD+vxsI2hYnIgIIY0k3E9SN4wIYrPNG4U0t7bsW+HJterSGXMZZ9TMA6Q2xwpio2178LtYS5cSQW0pgr2hzSZv+df4SW7B/vSf6dLDRmiH5/Zb6zmwi+/VK+xuD+TMW4zVRHojdDn9LRrH4CzQbT5dKCSvZl/keuxzKP1wfL5+FeP080kbDUKp48zrItjJYTtF7MHi7ymEnsg6+ZbEMk9fWp6+j9ZLXpuIOcO5d1igH4LKsuhtSyDfolPgUMRWSW+/iw2Kf+8UD7Q7hGlOM6n6fEvJzCIMQUvK+5Awtb0oY57Ba/Ci+r0NsCknYZMFJKYhSHg5LmO1HPJPD3Fumwg06wkDpw3PDGPb3gAo7OLnjClbfheKhy61RGxAo1099f+4pYCqsdL/LrRk/xqNvYAwclPAyz2ubrEcly1ocDWW2UGaKZK6PTsVqQ5u01OeWMZYkVuCz8K/c//fLug2U5yhchevyi2oJSY3SlFNxnJV+YaDzimIQvC2AP6yU3z/DjjmqtUDpZamyuF/Yz7zwnAYTgAobHTI23nJSa3zagHZxTY21cTFaBDSG7JM2/R/4QZXfKcYdamTseWO35EtNz5VSVrAb/joFfAK/M4CRB68D418lu5OzWkBwoszp5E5bFijDffyRPhmoNAgQO8uV6qE15xE2E1PEm0edbBMdQ5vZMXx18M5PAnbUjVoLCHznZd9LMc26IB9WrBTZrEoArztsHch8kXdCrjxSF0COsD75TkbGXVsQ5


> yes but since the forall X, PX comes from a "generalize X Y H4." where
> H4 is an hypothesis, how to introduce parenthesis?

It doesn't sound possible from what you've said, perhaps your proof went wrong somewhere earlier.

Gaëtan Gilbert

On 01/10/2019 10:09, richard Dapoigny wrote:
Thanks for your answer,

Le 01/10/2019 à 00:16, Gaëtan Gilbert a écrit :
What do you mean "variables are dummy"?
they are not related

Your statement seems similar to "forall X, P X -> forall Y, P Y" which is true iff "forall x, P x"
maybe you meant to parenthesize as "(forall X, P X) -> forall Y, P Y"?
yes but since the forall X, PX comes from a "generalize X Y H4." where H4 is an hypothesis, how to introduce parenthesis?

Gaëtan Gilbert

On 01/10/2019 00:14, richard Dapoigny wrote:
Dear Coq users,

Assuming classical logic, i have the following goal:

∀ X0 Y0 : N,
   (eta X0 Balls ∧ eta Y0 Balls ∧ eta B (el X0) ∧ eta X0 (ext A) ∧ eta B (el Y0) ∧ eta Y0 (ext A)  → eta X0 (el Y0) ∨ eta Y0 (el X0))
   → ∀ X'0 Y'0 : N,
       eta X'0 Balls ∧ eta Y'0 Balls ∧ eta B (el X'0) ∧ eta X'0 (ext A) ∧ eta B (el Y'0) ∧ eta Y'0 (ext A)  → eta X'0 (el Y'0) ∨ eta Y'0 (el X'0)

since variables are dummy, I expect to solve it with classical tactics such as eauto, tauto, etc. However none of these seems to work. Is anybody has some hints?

Thanks for your help,

Richard

--
*Richard Dapoigny*
/Associate Professor/ - LISTIC Laboratory
University Savoie Mont-Blanc
5, chemin de Bellevue
Po. Box 80439
Annecy-le-Vieux 74940
FRANCE
https://www.listic.univ-smb.fr/en/presentation-en/members/lecturers/richard-dapoigny-en/

/****** People who don't know history are condemned to repeat it. ******/

--
*Richard Dapoigny*
/Associate Professor/ - LISTIC Laboratory
University Savoie Mont-Blanc
5, chemin de Bellevue
Po. Box 80439
Annecy-le-Vieux 74940
FRANCE
https://www.listic.univ-smb.fr/en/presentation-en/members/lecturers/richard-dapoigny-en/

/****** People who don't know history are condemned to repeat it. ******/




Archive powered by MHonArc 2.6.18.

Top of Page