Skip to Content.
Sympa Menu

coq-club - [Coq-Club] ring tatic on Z with positives

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] ring tatic on Z with positives


Chronological Thread 
  • From: Abhishek Anand <abhishek.anand.iitg AT gmail.com>
  • To: coq-club <coq-club AT inria.fr>
  • Subject: [Coq-Club] ring tatic on Z with positives
  • Date: Fri, 8 Jan 2021 11:07:07 -0800
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=abhishek.anand.iitg AT gmail.com; spf=Pass smtp.mailfrom=abhishek.anand.iitg AT gmail.com; spf=None smtp.helo=postmaster AT mail-il1-f180.google.com
  • Ironport-phdr: 9a23:z7YBghHcafMp7ZPXvPgXNJ1GYnF86YWxBRYc798ds5kLTJ7zrsuwAkXT6L1XgUPTWs2DsrQY0rWQ6fy9EjBdqb+681k6OKRWUBEEjchE1ycBO+WiTXPBEfjxciYhF95DXlI2t1uyMExSBdqsLwaK+i764jEdAAjwOhRoLerpBIHSk9631+ev8JHPfglEnjWwba5wIRmsswncuckbjYRtJ6sx1xDEvmZGd+NKyG1yOFmdhQz85sC+/J5i9yRfpfcs/NNeXKv5Yqo1U6VWACwpPG4p6sLrswLDTRaU6XsHTmoWiBtIDBPb4xz8Q5z8rzH1tut52CmdIM32UbU5Uims4qt3VBPljjoMOjgk+2/Vl8NwlrpWrx2hqRJxwIDafZ+bO+Zlc6zHYd8XX3BMUtpNWyFDBI63cosBD/AGPeZdt4Twu0ABrRu/BQm3BOPg1DxIjWLq0K08yeshFxzJ1xEnEt0Uq3vUrNT1NLwSUe+rz6nE1y/Mb/VM1jf79YfEaBEhofCQXbJ/asfRxkwvGBnEjlWUs4DqIzSV1uEUvmWd8uFvWv6hhXQ9pAFtvjig2N0sio/Ri48Lyl7J6zh0zYk6K9ClVkJ2b8CoHZhMuiyUN4V6XMwvTmVqtSonyLALpJ62cigIxZkkxRPTd+KLf5aL7x/gWuucJypzinxieLK6nRmy8E6gx/XgWcmzylZKqDRKkt3ItnwXyRPc99WHR/1g9UmiwTaCzx7f5v1ALEwulqfWK4QtzqMxm5cSq0jPAyz7lFnwgaSLbEsr4PKo5P7iYrj+pp+TKYt0igbmP6QrgMO/AOA4PhEPX2if5OiwzbPj8VD6TblWlPE2na7ZsJfVJcQfuKG1GRNa0oEm6xqnDjem1soXnWUfIV5bZB6Ki5LlNlLOLfziEPuyglWhnC12y/3FIrHtGpDNIWLCkLflc7Z98UlcyA8rwN9F/J1UCrABIOnzWkDvt9zUFAU2MwquzObhFdpxzIIeWWOTAq+WK67SvlqI6fguI+mIfoMapDH9K/096/70kXA5gUMdfbWu3ZYPdH+4Ge1mL1yFbnron9cOCnwHvhE+TezvkF2NSyRfZ3e0X6Im5zE0EpiqDYnZRtPlvLvU1yCiW5ZSe2oOXluLCDLjc5iOc/YKciObZMF7xG8qT7+kHqYr1RC1tAL5g5NhJ+zYsnkRv5Liz9h45Kvakxg0+Xp1DtiS+26IRmBw2GgPQmllj+hEvUVhxwLbguBDiPtCGIkLvq4bYkIBLZfZitdCJZXyVwbGJInbTV+nRpCnBWh0QIthm5kBZEFyH9jkhRfGjXLzUu0l0oeTDZlxyZrymn34JsJz0XHDjfBzgFwvQ88JPmqj1Pcmq1rjQrXRmkDcrJ6EMLwG1XeUpmiGxGuK+kpfVVwoXA==

It was a bit surprising that ring couldn't solve the lemma below:
Should it be extended to preprocess the goal as I do in the ringpp Ltac below?
It seems that would strictly increase the potence of ring.
Has someone written such more potent ring tactics and are willing to share? 

Require Import ZArith.

Lemma ringz (numCpu: positive): (3 * 1 * Z.pos numCpu * Z.pos (1 * 16))%Z = (3 * 1 * Z.pos (1 * 16 * numCpu))%Z.
Proof.
  Fail ring.
Ltac ringpp :=
  repeat rewrite Pos2Z.inj_mul;
  repeat rewrite Pos2Z.inj_add;
  ring.

  ringpp.





Archive powered by MHonArc 2.6.19+.

Top of Page