Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Call for Participation - Workshop on Natural Formal Mathematics (NatFoM 2021)

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Call for Participation - Workshop on Natural Formal Mathematics (NatFoM 2021)


Chronological Thread 
  • From: Dennis Müller <dennis.mueller AT fau.de>
  • To: logic AT math.uni-bonn.de, isabelle-users AT cl.cam.ac.uk, coq-club AT inria.fr, agbkb AT informatik.uni-bremen.de, agda AT lists.chalmers.se, cade AT itu.dk, hol-info AT lists.sourceforge.net, mizar-forum AT mizar.uwb.edu.pl, om-announce AT openmath.org, community AT opendreamkit.org, members AT cicm-conference.org, pvs AT csl.sri.com, theorem-provers AT ai.mit.edu, theory-logic AT cs.cmu.edu, twelf-list AT itu.dk, types-announce AT lists.seas.upenn.edu, logic-list AT helsinki.fi, logic AT cs.stanford.edu, loginf AT lists.tcs.ifi.lmu.de, fm-discussion AT cs.man.ac.uk
  • Subject: [Coq-Club] Call for Participation - Workshop on Natural Formal Mathematics (NatFoM 2021)
  • Date: Mon, 17 May 2021 17:10:51 +0200 (CEST)
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=dennis.mueller AT fau.de; spf=Pass smtp.mailfrom=dennis.mueller AT fau.de; spf=Pass smtp.helo=postmaster AT mx-rz-3.rrze.uni-erlangen.de
  • Ironport-hdrordr: A9a23:EyNfwKNzwT8j88BcTvCjsMiBIKoaSvp037Dk7SFMoG9uA6qlfqGV7ZMmPHDP+VUssR0b9OxofZPwJU80lqQFhLX5X43DYOCOggLBR+tfBMnZrQEIcBeTygcy78hdmuRFeb/NJGk/pfm/ygi1GdQtzbC8gdmVuds=
  • Ironport-phdr: A9a23:oCD/gRQBgZVuc1YyjvRl/ViBg9psog2ZAWYlg6HPa5pwe6iut67vIFbYra00ygOQDMOBta8P1LSempujcFRI2YyGvnEGfc4EfD4+ouJSoTYdBtWYA1bwNv/gYn9yNs1DUFh44yPzahANS47xaFLIv3K98yMZFAnhOgppPOT1HZPZg9iq2+yo9JDffgFFiCCjbb5zLBi6ogfcu8gLioZ+N6g9zQfErGFVcOpM32NoIlyTnxf45siu+ZNo7jpdtfE8+cNeSKv2Z6s3Q6BWAzQgKGA1+dbktQLfQguV53sTSXsZnxxVCAXY9h76X5Pxsizntuph3SSRIMP7QawoVTmk8qxmTgLjhiUaOD4j6GzZhMx+grxYrhy8qBNw34HabZqJNPpnZK7RYc8WSXZDU8tXSidPApm8b4wKD+cZM+hXsY/9p10PrRulHQaiA//3yjtMhnDox60xzuMsHhzY0wwmGdIOsW/UoM/wNKcPT++1yK3IwivZb/5N1zfy8pXIfgo8rv6SRL99d9faxkYzGQ3flFqQtZDlMC2P1uQLq2WW8fZsWOayh2M6pAx8vyaiy8kjhITVh48Y1l/J+Th2zosrJdO1TFB2bcKkHZZTqy2UN4t7T908T212tyg21rMLtJimdyYEz5QnwgTQa/2Bc4WQ/h3jVfqeITJhiH15f7K/gRiy/la6yuLiUMm7zEhFojBCktnWuXABzwLc5dKcSvp94kih2SyA1wHJ6u1eJkA0j6XbJpg8ybAzjpoeqVnPEyHrlEnskaObdUYp9vK15+j6eLnquIGQO5dwhw3gKKgihNGzDOQiPgQTQmSW+P6w2KPj8EHnRrhBk+c4nbPDsJ/AIMQWvq65DBFR0oYk8xu/Cjin3M0CnXgGNV5IdgiLj5LzO1DPPv/0F+q/g1KtkDty2f/GJLnhDY/LLnjMjrjhe6xx5FNCxwYrzNBf4YxbCq0ZLf7uVEL9qcbUAgI6PgG32errFchx2pkAVW6RGqOZNbndsV6M5uIhOemMY4oVtS7gJPc74f7ui345mUQHcamswJsYdnS4HvB4LEWDenfsjM0OEXoQsgUjUuPmkEeCXiJLZ3auQ6I84Sk2B56hDYfaX4yinLiB3DqgEZBNfWBHClWMEW/yeImeWvcMbjiSIs57nTAeW7ihUdxp6Rb7sAj1yrFPK+PI+msFs5Om3t9z4avfmFV69Cd9BcmZ12zIUnp5hHggTDtw16l650V2jEqAleBzhOUdHthO7dtIVB07PNjS1agyAt/4WQjpf9GHT0yjS8mnAncsSNN0ycUDZkt7XdmvyljK0CajK7sUjKCQQpc0+6bZ0mLqYd1wjz7N3aUsp1g6X41DNinuhql7sgnVCYnhl0SCi73sbqMBxiXA+mCZwmfIukxEFEZ1ULfMRzURYVHLqPz851HLVfmzFr5hPwdcj9aGbuNNb5jgi1NBWfHoNfzZe2+3nm6sBVCP3LzIJIHtfmAA2iTBGWADiw0V8WyLPA09BzvnpHjRSHRrGFflbln32eJ/o3b+RUgywQyQYktq2vyy4BFRzeSCUNsYxbZCoz0g7T5zGRL1w9LbDMCNok95ZqJCbMkmyF5Gk2fYq0pwMoHkZ7xii1kEYkFzuEzv3D18EcNLlNVsoX83iEJuNq+c3hZFdiiE9ZHsJ/vbKS264AG3ZrWT01fY18uQ8aon7PUjt06lpwygDQw/63hh1Z9Y32bYrpHNAwsZFJbwSVof9xV+vLDcYSh76YKQnXlrPqi/mjTZnck1De0rzQysOdpTLefMEAj9EssUL8yvM/Ax3USidVQFMuEU8Kspec+rM7OI3eunPf1rgSm9jGNByItmlEeF8Wx1QajV3MUr2fadiyeKUTH9l2CEJsTzlJoMMT0fGGy+0m7hGYNVYqBoVYgCFCGiLpvklZ1Fm5fxVisApxaYDFQc1ZrxEfJzR1ntmBdCkB9Ru2a1lG2lyT0xnistp6yQ0SqIz+mwLXLv1UZFTXQkgVq+eOBcavgUVVXuYwV7zHOY

NATURAL FORMAL MATHEMATICS - NatFoM (Call for extended abstracts)

A workshop held between July 26 - 31, 2021 as part of the

14th Conference on Intelligent Computer Mathematics (CICM 2021)

(WILL BE HELD ONLINE OR HYBRID; details to be announced on the CICM website
https://cicm-conference.org/2021/cicm.php)

In mathematics there has always existed a strong informal sense of
"naturality". Natural theories, notions, properties, or proofs are prefered
over technical, convoluted, or counterintuitive approaches. If formal
mathematics is to become part of mainstream mathematics, its formalizations
and user experience have to become more natural. This workshop, following a
first edition in 2020, broadly addresses the issue of naturality in formal
mathematics.

Topics of interest include (but are not limited to):

The notion of naturality in mathematics generally
Natural input and output languages for formal mathematics systems
Parsing natural mathematical language
Controlled natural languages (CNL) for mathematics
Making formal mathematics documents readable
Naturality of foundational theories (types, sets, HOL, ...)
Naturality of proof methods
Natural proof structures and granularities
Natural structurings of formalized mathematical texts and libraries
Mathematical type setting (LaTeX) and formal mathematics
Examples of natural formalizations

Invited speaker: Jeremy Avigad

Submissions

We call for submissions of extended abstracts (1 page) and demonstration
proposals presenting work related to the workshop's topics of interest.
Accepted abstracts can optionally be expanded to full papers (4 to 15 pages)
to be published in proceedings on ceur-ws.org. To promote Natural Formal
Mathematics, unfinished or exploratory work will also be welcome.

Electronic submission is done through EasyChair at
https://easychair.org/conferences/?conf=cicm2021 (select the author role,
select the "new submission" tab, and choose "NatFom"). Extended abstracts and
papers should be formatted in LaTeX using the style onecolceurws.

- Submission is continuous (early submit -> early notify).
- July 1. 2021: Final revised papers due
- July 26 - 31. 2021: Workshop (half day; date to be announced)

Accepted abstracts and demonstrations should be presented online and live, to
allow for questions and discussions.

Program Committee

Peter Koepke, Bonn (co-chair)
Dennis Müller, Erlangen (co-chair)
Merlin Carl, Flensburg
Marcos Cramer, Dresden
Michael Junk, Konstanz
Cezary Kaliszyk, Innsbruck
Andrea Kohlhase, Neu-Ulm
Aarne Ranta, Gothenburg
Josef Urban, Prague

--
Dennis M. Müller

"To do mathematics is to be, at once, touched by fire and bound by reason.
This is no contradiction. Logic forms a narrow channel through which
intuition flows with vastly augmented force"
- Jordan Ellenberg (How Not to Be Wrong)



  • [Coq-Club] Call for Participation - Workshop on Natural Formal Mathematics (NatFoM 2021), Dennis Müller, 05/17/2021

Archive powered by MHonArc 2.6.19+.

Top of Page