coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: "Grant Jurgensen" <mailing-lists.coq AT grant.jurgensen.dev>
- To: Pierre-Marie Pédrot <pierre-marie.pedrot AT inria.fr>, coq-club AT inria.fr
- Subject: Re: [Coq-Club] Eliminating equalities over dependent function types
- Date: Wed, 03 Nov 2021 12:23:22 -0500
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=mailing-lists.coq AT grant.jurgensen.dev; spf=None smtp.mailfrom=mailing-lists.coq AT grant.jurgensen.dev; spf=Pass smtp.helo=postmaster AT out4-smtp.messagingengine.com
- Ironport-data: A9a23:9RbocqlXLHpca7f5vs53m3bo5gywJ0RdPkR7XQ2eYbTBsI5bpzwHzTYZDWqPPPiKMzahf4p1YIjipBsAvsSHxoBgS1dt3Hw8FHgiRejtVY3IdB+oV8+xBpSeFxw/t512huEtnanYd1eEzvuWGuWn/SYUOZ2gHOKmUbedYnspHmeIdQ944f5ds75h6mJXqYPha++9kYuaT/z3YDdJ6RYsWo4nw/7rRCdUgRjHkGhwUmrSyhx8lAS2e3E9VPrzLEwqRpfyatE88uWSH44vwFwll1418SvBCvv9+lr6WkoXXuKXJg2SkjxTVrO5ixdDoCM/1Kk6MvdaYkBS49mLt44vjowU7NrsD115VkHPsLx1vx1wFih/OaxA9/rDIGOjqoqYyFTufGHlxekoDlwsMoAe4etxR21D65T0LRhUPk7Y2LnsqF68YrI22px+fJOD0Jkkknpn1HTSCessaYvSRr3Do95exjY5wM5Udd7GasYDbiZHfhXFaQdGfFYREpM32umy7kQT2RVM8AfO4/cjuj2LilRliu21doCIJIKeHpAN2BuM+Tfv4ULSBzc2NPi+wBy56FSSh8rbxHuuAcZLANVU7dZtnUHPg3cWFAVQUFaguvC2i0ixVtRQKkoZvCEpqMAPGIWQZoGVd3WFTLSs53bwmua8EtHWLCmK17aIph2cGnBCSzNac9Uptck5SDol11mE2djuAFSDdZWLHGmF+O78QSyaYEAowa0qPEfojjfpJ/Hsuog1klTNU8xsHaiug9uzFTzuq9xPhEDSmJ1L5fPmFMyHEZTvjCiloISPTBMv6QjRRW+jqA90euZJoqTABUfztZ59EWpScrVNULXoVSRTACDiwKxhTBCwfdg=
- Ironport-hdrordr: A9a23:0CVCGazNWoIv3/Loo6bmKrPw5r1zdoMgy1knxilNoH1uA7GlfqWV8ZgmPHDP+U8ssR0b6Ki90ey7MBThHOBOkO0s1MaZLWzbUQKTRekIh+vfKn/bakvDH4VmpN1dmsZFeabN5BRB/KTHyTj9N/pl+cKA4bDAv4bj5kYoaS0vUrpn/hc8IA6GCEEefmd7LKt8MLbZ3MZBqja6EE55Ui3CPAhnY9T+
- Ironport-phdr: A9a23:ZoGwahWdAFLTRyooUkBRWBAH3dLV8KwjUjF92vMcY1JmTK2v8tzYMVDF4r011RmVB9yds6sP0rCM++C4ACpcu87H6ChDOLV3FDY9wf0MmAIhBMPXQWbaF9XNKxIAIcJZSVV+9Gu6O0UGUOz3ZlnVv2HgpWVKQka3OgV6PPn6FZDPhMqrye+y54fTYwJVjzahfL9+Nhq7oRvMusUMnYduN6k9xgbXrndWZu9awX9kKU+Jkxvz+Mu84IRv/zhMt/4k6sVNTbj0c6MkQLJCET8oKXo15MrltRnCSQuA+H4RWXgInxRLHgbI8gj0Uo/+vSXmuOV93jKaPdDtQrAvRTui9aZrRwT2hyoBKjU07XvYis10jKJcvRKhuxlyyJPabY2JKPZzeL7WcMgETmRdQMleSy1BApu9b4QRCeoBIf1YpJT5q1cXsBeyGRWgCObpxzRVhHH5wLc63vwmHw7I0wMuHNABsHraotv1KqkcTPy6wbLSwjnfdf5bwy3w5ZLKfx0nvPqCXahwcc3UyUQ3GQ/Lj0+QppbjPzOJy+8Dt3Wb7/BvVe2xjW4nsB9+oj6hyswxjYTJg5gaylHA9SV4xoY1KsS0SEp6Yd6/DJtQrDuWOJdxQsM7WGxotzw6xacAuZ6nZiQKyoknxwTQa/OZdYiI+QzsVOCLLThlmn1lZquyihCv+kev1uPyTNO70EpWriVbiNnMsGgA2hjN58aJSvZw+kiv1DWB2g7c9uxIPV04mKXHJpMu3rM9l4YfvFnMECL0hEn4g7Oae1sm9+W05enqYbHrqJCcOYJylwrwMbwul9S+DOk5KAQCQnWX9fmm2LDs50H1XrZHg/srmaTHtJDaON8bprKnDA9Pz4gj6he+ACm+3dgEm3QMMUhLdwidj4fzPlHDOPD4Aum7g1SriDprwO3GPqHuD5nUNXjDlavhfa5n505Z1gUz1stf6IhbCrEAJvLzVVH+tNrXDh84NQy73fzrB8l61oMbQW6PA6mZP73OsVKQ5+8iIvOAaJIItDrgMfQo6OTigWE6lFMFeKmmx5oXaHS2HvR8JEWZZGLhgtIbHmcLugo+TerqiFKbXT5XZnayRL485iohBI26CofDX5uggLOb3CihGJ1WenpKClKREXfyeIWLRfEMaDmMLc9niDALSKauS5E52RG0qAD606ZnLvbT+iAAqZ3j08F16/TPmhE26Dx7FN+Q03qNTmFxhmMHXSU63KF5oUxny1eMy7J0g/JCFdZL/fNGTh86NYLAz+x9E93yQhzOccqTSFahXtWrGjAwTtM0w9AVeUZyAc+ujhHF3yqwAr8ajaaHBJIu8vGU43+kH8dw0WzLkYwolVgrdfPOOXehmuYr7wneHZTE1kCQjaenM7wR0DTK6E+Cy3CPtQdWSlg0Ga7CRDUUYlbchdX//ELLCbG0Wpo9NQ4Ug+GYI61WIv/0l1pLQuzuPp6WN2e4mmOxAxnNwrKXcJGscGIE9CrHAU4Y1QIO53mLMxMzAGGtrnyIX28mLk7mf065qbo2k3i8VEJhiljSNyWJMpK64BcTmbqeVukc07QftSFnpzhqTg7VNzP+DMec+096eblEJ9Yw+0xO2mPfuAF7MZ2mIuZpgVtMKmyfUGvhzRxxFsNCjNIloXUxwQw0Ja+GggspSg==
I was under the impression that equality only followed from cardinality in HoTT. Wouldn't a more "traditional" view on type equality identify types with their inhabitants, and therefore suggest `nat -> bool` and `nat -> nat` to be unequal? Or am I misunderstanding something?
Still, I take your point that type equality is quite under-specified in CIC and therefore open to many possible models and interpretation. I'm not sure its worth adding any fact axiomatically unless one is prepared to take a strong philosophical stance on the meaning of type equality.
Thanks,
Grant
On Wed, Nov 3, 2021, at 12:03 PM, Pierre-Marie Pédrot wrote:
On 03/11/2021 16:38, Grant Jurgensen wrote:> I was wondering if the following property is provable (or disprovable)> in Coq:>> Theorem forall_eq_elim: forall (A: Type) (B C: A -> Type),> (forall a, B a) = (forall a, C a) ->> (forall a, B a = C a).>> This is the converse of `forall_extensionality`, found in the standard> module `Coq.Logic.FunctionalExtensionality`. Assuming functional> extensionality, this `forall_eq_elim` property essentially states the> injectivity of the forall binder.I don't think it's disprovable because you have basically zero way toprove an equality on types in CIC apart from reflexivity. But as soon asyou have a bit of power over equality this is dead wrong.Take A := nat, B := fun _ => nat and C := fun _ => bool. By acardinality argument, (nat -> bool) = (nat -> nat) but there is no waythat bool = nat. The cardinality argument holds in quite a few models,e.g. this is true both in Set and in HoTT.If you pick a model where types are represented as syntactic codes itmight become provable but even there I am not sure.PMPAttachments:
- OpenPGP_signature
- [Coq-Club] Eliminating equalities over dependent function types, Grant Jurgensen, 11/03/2021
- Re: [Coq-Club] Eliminating equalities over dependent function types, Fabian Kunze, 11/03/2021
- Re: [Coq-Club] Eliminating equalities over dependent function types, Grant Jurgensen, 11/03/2021
- Re: [Coq-Club] Eliminating equalities over dependent function types, Pierre-Marie Pédrot, 11/03/2021
- Re: [Coq-Club] Eliminating equalities over dependent function types, Grant Jurgensen, 11/03/2021
- Re: [Coq-Club] Eliminating equalities over dependent function types, Pierre-Marie Pédrot, 11/03/2021
- Re: [Coq-Club] Eliminating equalities over dependent function types, Grant Jurgensen, 11/03/2021
- Re: [Coq-Club] Eliminating equalities over dependent function types, Hugo Herbelin, 11/03/2021
- Re: [Coq-Club] Eliminating equalities over dependent function types, Hugo Herbelin, 11/03/2021
- Re: [Coq-Club] Eliminating equalities over dependent function types, Fabian Kunze, 11/03/2021
Archive powered by MHonArc 2.6.19+.