coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: DONNIE BRASCO <OOO1337777 AT outlook.com>
- To: "rosolini AT unige.it" <rosolini AT unige.it>, "olivia AT ihes.fr" <olivia AT ihes.fr>
- Cc: "categories AT mta.ca" <categories AT mta.ca>, "coq-club AT inria.fr" <coq-club AT inria.fr>
- Subject: Re: [Coq-Club] [🔴 CfP - Grammatical Sheaf Cohomology] 2nd ItaCa Workshop
- Date: Sat, 18 Dec 2021 05:55:48 +0000
- Accept-language: en-US
- Arc-authentication-results: i=1; mx.microsoft.com 1; spf=none; dmarc=none; dkim=none; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-AntiSpam-MessageData-ChunkCount:X-MS-Exchange-AntiSpam-MessageData-0:X-MS-Exchange-AntiSpam-MessageData-1; bh=bVPXI7VGTbzPAVmyD1XQ19v/IQl7wQ0V8wu5VRja6RQ=; b=dF63dgXbmnwNsrfgNBUgwhib61jYo9czO1Aybn19n5TR1GZPPPhlnxuQngvMD62CzmVHh6Z8GOG/2o96/rLPbp4lJpbJk38ihqB1mRF3yJMl3rLIoBMBqjAN2RPXkJ5qBT33Yc+lSYAECbFU43OYmk3H+WEMhM/npP/xQ+BKiac68zZDhbrUG26+QaYDIctF2BwPp1SkrgDTDim0J3+6/gvXheX0ApkrU7A0zJ/W6499bS1mwVK/tPxLLMvg+J+7YlMl/iz1MPP3Pf6fVtirvJdrGrEWWH1bYTaqlG31TY4UDFM2kJnu5yOAOk+WEKsrhyAety5jxMXM6mrTUv7iNA==
- Arc-seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=hyXXrq1ysp7cgrlNdRwXHesFpluPBZD1z+mgM0ZRKOD7zZPIhp7Pf8vnUdRExJdkp09v0jC/WnQ7fAE5X9lfP/jOG5s9Ogv8OnAvlq1N1kQ3mY5ltDWr6BeDr1oJMknqT5ejfo3vFIRYED+RGuvSBBq9/oXuk/Y8XvTs9QRZVehF+Amc77aEZesArCddz7AryqlFqveNkQdsvz51crOL1qFo7KlwNfWOuJl2knwn2diIqFIDcBOGd8ugM7C5duCP1DzQnoM2tUcmdsWv9nft8O8xLUkeEDTkB28EETAYyrAqati0OiUIwTy3kD7HeZafGoE89fTfXKDb7kEX+CpqiA==
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=OOO1337777 AT outlook.com; spf=Pass smtp.mailfrom=OOO1337777 AT outlook.com; spf=Pass smtp.helo=postmaster AT EUR04-DB3-obe.outbound.protection.outlook.com
- Ironport-data: A9a23:EosSGK7Wp9eTqbasGdgjEAxRtATGchMFZxGqfqrLsXjdYENS0TwOmmEaDT/SPfmJYmv3c9oga4SyoEoOuMDQn4BqQQod+CA2RRqmi+KVXIXDdh+Y0wC6d5CYEho/t63yUjRxRSwNZie0SiyFb/6x/RGQ6YnSHuClUbSdangoLeNZYH5JZSxLy7ZRbrFA2oDR7zOl4bsekuWHULOX82Yc3lE8t8pvnChSUMHa41v0iLCRicdj5zcyn1FNZH4WyDrYw3HQGuG4FcbiLwrPIS3Qw4/Xw/stIovNfrfTX3AwGuKXESLVz31cVu6lnwRIoTE03uAjLv0AZExLijKP2dds1NFKsp/2QgAsVkHOsLhFFUgCVX4ie/wdkFPECSDXXci76GrhKiC3nKoxU2kxIJEc/eF0R2pJ8JT0LRhUN0/a2Ljtm9pXTcE33594c6EHJrg3sXZ5iDrdEPwOWoHGW6yM5NlC3T52iNomIBp0T95BPGEpMQCZNkUJYkNNXcp4xrr22G2kJmUe9UbK8IMpx0PW6iBx9JnkFubPXOKLYNEMxhPA4jPSl4jiKhQTNdjazj6Dqi703r6VxXynANNJUrql6vRtnVufgHQJDwEbXke6pv//jVOiX9VYKAof/S9GkET7z2TzJvGVYvFyiCfsUt8gt9ts/ykSxTy3kvaRzyzCQ28OQ3hGdcAss9IwSXoyzFiVktj1BDtp9rqIVXaa8bTSpjS3UcTQBXFXfjcKFGPp/PG6yLzfTDqWJjqgLEJxptroBTX3xDPMpy8771nWpdBezL21pDgrnBr1zqUkjWcJCsH/WX+56gR+Z8iuYInABZ3zhRpfBN7xc2Rtd0ToVyRTAC7iwH1NeOGwrD0xIYyU
- Ironport-hdrordr: A9a23:N/u2Tqi6iICmY8ErCHG+oRNi1nBQXq8ji2hC6mlwRA09TyX2rayTdZgguCMc9gx+ZJhIo7npU5VoKkmyyXca2+MsAYs=
- Ironport-phdr: A9a23:dg+bfxaqTPnPYVveefhIIh3/LTEU14qcDmcuAnoPtbtCf+yZ8oj4OwSHvLMx1gaPDNWQsKMMotGVmpioYXYH75eFvSJKW713fDhBt/8rmRc9CtWOE0zxIa2iRSU7GMNfSA0tpCnjYgBaF8nkelLdvGC54yIMFRXjLwp1Ifn+FpLPg8it2O2+5YDfbx9MiTe+br9/IhG7phjNu8cLhodvNrw/wQbTrHtSfORWy2JoJVaNkBv5+8y94p1t/TlOtvw478JPXrn0cKo+TbxDETQpKHs169HxtRnCVgSA+H0RWXgLnxVSAgjF6Bb6Xortsib/q+Fw1jWWMdHwQLspXzmp8qVlRwLyiCofNzA37nzZitB+gqxYvB2vqBNwzpXIYI6OKPZyYr/Rcc8YSGdHQ81fVzZBAoS5b4YXAeQPJP5WoZH+qVUBsBCzGBWiCf/yxDJWn3H9wKo33f04Hw/fwQAtEdwDvXbWodj3NqofSue1zLTUzTXHaPNW3jT95JLUfRAmpPGBRLR9etfexkczDQ3KlEmQqZD7MDOP0OQAq3SX4ulvW++giWMqpB19rDihyMowi4THhowYxk3E+yh43Io4J8O0RUxmbNOqDJdcqz+XOoR4T80sX21lvCY0xqAAtJWmciYKz5EnyATea/yBa4WI5xPjW/qLITd/n3Jlf7y/hwqo/Ue8ze38U9G40VhNripfkdnMrWwC1xzU6siATvtw8Eas1DaV2w/P7eFEJEY5nrfYJZ452rM9mYYfvV7HEyPogkn7jqCbel8g9+Wm8+jrfLTrqoOSOoJxlw3yLr4hl826DOglLgQCQW2W9fq/2bL5+ED0RahGg/Iwn6LEqp7VP94bqbS8AwJN0oYs9RK/DzC+3doXk3YJME5JdR2eg4bnJlzDLun0DfCkjFuyijtrwO3GPqH6DZXKM3jDlqrucaxl605Gzwoz0c5Q6I5ICrEAJ/LzXFX9tNvFDh8lNwy0xOHnCNZn2owCXmKPB7eVMKLUsVCW+uIiO+aBaJMPtDv5NfQp/fzjgHAjlVIZc6SlxZ4XZ2q5HvRiLUWZe33sgtIZHGkTpwQwVfHmhVOMXDNRZXu/XaAx6yo8CIK7EYfDQoetgLuC3CuhApJWYWVGBkiWEXj0b4WER+sMaCWKL8B9lTwETKGtRJMl1RGzrwD30KFnL+rR+i0Ar53vztl15+vJlREz7zN4Fcqd03veB11zyykSQCQx2KF5oGRgzFaM3O55n7YQQcZU/PRNUwE7HYPazuN3TdHuDEaJNNCNSUinS/2nATwqCNwriZdaZEJ8BdSrphHD0jHsDaVDxJKRA5lh3oX6+Vncb+xH4k3t8+F1qH4BG5AUajL52YZ46hTXAInK1U6ekvD5JuwnwCfR+TLbniK1t0ZCXVsoOU0kdV0iXBOK6PjTvQbFRbLoDqk7OAxcz8LEMrFNdtDikVRBQrHkJcjaZGWy3Wy3AETRrltpRI33Z2Ea2yabA08BwVh7FZmuMhUiAiCmoCTVCzk8TDrS
- Suggested_attachment_session_id: cd6f7d83-e5a2-5db0-ef15-4a4ae98cd840
✓ Where: Outside 2nd ItaCa Workshop @
https://appsource.microsoft.com/en-us/product/office/WA200003598
✓ What: Grammatical sheaf cohomology, its MODOS proof-assistant and
WorkSchool 365 market for learning reviewers ↪
https://nicolasbourbaki365-demo.workschool365.com
✓ Context: The “double plus” definition of sheafification says that not-only
the outer families-of-families are modulo the germ-equality, but-also the
inner families are modulo the germ-equality. This outer-inner contrast is the
hint that the “double plus” should be some inductive construction... that
grammatical sheaf cohomology exists!
And the MODOS proof-assistant implements the cut-elimination confluence
of this inductive construction where the decreasing measure of
families-gluing is the restricting covering: | Gluing : (forall (G : Site) (v
: Site( G → V | in sieveV )), PreSheaves(Restrict F (sievesW_ v) → Sheafified
E)) ⊢ PreSheaves(Restrict F (Sum sievesV_ over sieveU) → Sheafified E). And
the separateness-property is expressed via the congruence-conversions
clauses. Then the generalization to cohomology beyond 0th (sheaf) is that the
grammatical sieves could be programmed such to inductively store the
(possibly incompatible) data along with its gluing-differentials: Any list of
(semantically-equal) arrows in the grammatical sieve now stores both data (on
the singleton lists) and differentials (on the exhaustive ordered listings),
and the (inductive) differentials of the outer-gluing of inner-gluings
correctly-compute the differentials of the total/sum gluing because ∂∂ = 0…
Moreover, the generating topological site has its own cut-elimination
confluence of arrow-terms, each arrow-term is covered by its arrow-subterms,
and the algebra-operation of composition ⟦f⟧*⟦B⟧*⟦g⟧ → ⟦f ∘_B g⟧ is indeed
geometric, is some sheaf condition. Possible applications are the
constructive connecting-snake lemma for additive sheaves, or the constructive
dependent homotopy types or the constructive geometry of quantum fields in
physics.
This research is the fusion of prompts from two expert mathematicians:
Kosta Dosen and Pierre Cartier. But should this research be
immediately-conclusive and peer-reviewed only by experts in some
publishing-market susceptible under falsifications/intoxications? And what
sense is peer review of already-computer-verified mathematics? WorkSchool 365
is Your Market for Learning Reviewers. WorkSchool 365 is your education
marketplace where the prompting authors pay to get peer reviews of their
documents from any learning reviewers who pass the test quiz inside the
prompting document, with shareable transcripts receipts of the school work.
WorkSchool 365 documents are Word templates with business-logic automation
and playable Coq scripts. WorkSchool 365 is free open-source code Microsoft
Teams app in the web browser with authentication via only no-password email.
Enroll today! WorkSchool365.com
- Re: [Coq-Club] [🔴 CfP - Grammatical Sheaf Cohomology] 2nd ItaCa Workshop, DONNIE BRASCO, 12/18/2021
Archive powered by MHonArc 2.6.19+.