Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] ring_theory instance for Z mod d setoid

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] ring_theory instance for Z mod d setoid


Chronological Thread 
  • From: Dominique Larchey-Wendling <dominique.larchey-wendling AT loria.fr>
  • To: coq-club <coq-club AT inria.fr>
  • Subject: Re: [Coq-Club] ring_theory instance for Z mod d setoid
  • Date: Thu, 23 Jun 2022 23:14:04 +0200 (CEST)
  • Authentication-results: mail2-relais-roc.national.inria.fr; dkim=none (message not signed) header.i=none; spf=SoftFail smtp.mailfrom=dominique.larchey-wendling AT loria.fr; spf=None smtp.helo=postmaster AT zcs-store7.inria.fr

Sure, there is one such library in the Coq Library of Undecidability proofs, mostly/solely used to establish
Matiyasevich theorem (ie the exponential function is Diophantine).

You can start here:

https://github.com/uds-psl/coq-library-undecidability/blob/coq-8.15/theories/H10/ArithLibs/Zp.v

Best,

Dominique


De: "Abhishek Anand" <aa755 AT pm.me>
À: "coq-club" <coq-club AT inria.fr>
Envoyé: Jeudi 23 Juin 2022 21:21:43
Objet: [Coq-Club] ring_theory instance for Z mod d setoid
Has someone written a ring_theory instance for the Z mod d setoid (a and b are equal iff a mod = b mod d)? Along with the equation d \equiv 0, ring_simplify could deep inside mod terms, e.g.  (a+d)(a+d) \equiv a*a.

--
Abhishek Anand




Archive powered by MHonArc 2.6.19+.

Top of Page