coq-club AT inria.fr
Subject: The Coq mailing list
List archive
Re: [Coq-Club] [ALGTOP-L] twinned conference: homotopy — [CfP] H¹(Δ²) = 0, H¹(S¹) ≠ 0 grammatically
Chronological Thread
- From: admin <admin AT AnthropLOGIC.onmicrosoft.com>
- To: "algtop-l AT lists.lehigh.edu" <algtop-l AT lists.lehigh.edu>, "director AT fields.utoronto.ca" <director AT fields.utoronto.ca>, "sliu AT fields.utoronto.ca" <sliu AT fields.utoronto.ca>, "52division AT torontopolice.on.ca" <52division AT torontopolice.on.ca>, "scholze AT math.uni-bonn.de" <scholze AT math.uni-bonn.de>, "coq-club AT inria.fr" <coq-club AT inria.fr>
- Subject: Re: [Coq-Club] [ALGTOP-L] twinned conference: homotopy — [CfP] H¹(Δ²) = 0, H¹(S¹) ≠ 0 grammatically
- Date: Thu, 25 Aug 2022 12:37:12 +0000
- Accept-language: en-US
- Arc-authentication-results: i=1; mx.microsoft.com 1; spf=pass smtp.mailfrom=anthroplogic.onmicrosoft.com; dmarc=pass action=none header.from=anthroplogic.onmicrosoft.com; dkim=pass header.d=anthroplogic.onmicrosoft.com; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-AntiSpam-MessageData-ChunkCount:X-MS-Exchange-AntiSpam-MessageData-0:X-MS-Exchange-AntiSpam-MessageData-1; bh=cjm1TkyFiawdaNNjrqQjkfmXmeGfB8GrUgDTTC340VY=; b=ULcJc5XFqVe8E2fhCV/g0fMLiM9MlyNAh0fwz6lj3OsdFYoAYjHTbDZlhZKvhRaOUOyT5OFiPWpgT90Sd9xld6UYUbtkpM7QWWRBr8AjKxjitznvW8BgZYyPrwqsfkHkWoVrCXwsJJ6wDZGzJJTltqrTeH4y0eY1HSZ24UUZWhvsab2W6AN3UnjS2FZPZPDD+UnQ8LheZfveHlAIa+X3A4bQYlZN8NM9V9dRy7qbqFkJzQXR9tYn1pFw1s3IVEJaJAjQIUigRcp71k1ApmEsb6MFoFSfVqrNkFA1R9xwkmaYW/utk+kI/MzDoQwQz86if7Z1ZbOoO10fFBvdXOSpsA==
- Arc-seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=VqgnoVJpXgzL77s0RUVTrs+VGngE/7kgIHBfhoBxI9Bhw5+1bPoTwJse2PurfoamlMf4LVgrNe72QydK3IXTu7rjDzWfnlEShAhVm4qtXYrp7e+CHYzTKsZ/WpQxDX2e1b8MUEbnYA3e/MMEGsnwT2b8WzVhGU7BlKgJQ6M5nrBPiR3w+HASxp1MHLIeUQdvKg2Gnx+Or1JI9hGI/UR4WL19lHMDTbXSSNqRNzW+Ru5khU2YWw27Hm+OXifkZvt1gRV/ahlQZCwFlQo4IEWahFJYoO3komTTklnmkzde6n4GX/bJDfM/P7aNAc7cfdhuaG5eL9tlW4TjE2i52ia2bA==
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=admin AT AnthropLOGIC.onmicrosoft.com; spf=Pass smtp.mailfrom=admin AT anthroplogic.onmicrosoft.com; spf=Pass smtp.helo=postmaster AT NAM02-BN1-obe.outbound.protection.outlook.com
- Ironport-data: A9a23:kJn15KK6utE5Z0E4FE+RHZAlxSXFcZb7ZxGr2PjKsXjdYENS1DEOy WMdXDjVM6mCY2D3LopwbY6+8UwDvpeEndVrSFYd+CA2RRqmi+KVXIXDdh+Y0wC6d5CYEho/t 63yTvGacajYm1eF/k/F3oDJ9CU6jefSLlbFILas1hpZHGeIcw98z0M48wIFqtQw24LhU1nQ4 YmaT/D3YTdJ5RYkagr41IrY8HuDjNyq0N/PlgFWiVhj5TcyplFNZH4tDfnZw0jQHuG4KtWHq 9Prl9lVyI92EyAFUbtJmp6jGqEDryW70QKm0hK6UID66vROS7BbPqsTbJIhhUlrZzqhrtl00 epAkbqMQAZ4MIjsxeEACB0FKnQrVUFG0OevzXmXl+W2lxeDWV21hvJkAQcxIJES/ftxDSdW7 /sEJTsRbxeFweWr3La8TeoqjcMmRCXpFN9H/Cg4kneDVKxgH82rr6bivbe02B85isVPG97XY dYZcz13aBPPYhYJPVESCZkkm/yviGW5eDpdwL6QjfZmsjaMll0tuFTrGPbOXfyUfZ5npW+Rv 1ji0WmmBjEILPXKnFJp9Vr337SUxXqhMG4IL5Wz8ecvi1mOzEQIGRgOXB26p+O4gwiwQbpix 1c8/yMvqe048hWtR9ylABq++iba41gbRsZaFPA85EeV0K3I7g2FB28CCDlcdNghs8xwTjsvv rOUoz/3LQ1mtaSqRFa7yr6V/D2XGXUQMDQGOBZRGGPp/OLfiI00ixvOSPNqH6i0ksD5FFnML 9ai/HhWa1I73Z5j6kmrwbzUq2ny+MWSEmbZ8i2SATL+sV4hDGKwT9bwgWU3+8qsO2pworOpl n8Vl9SZ6oji5rnXz33UH43h8FxWjstp3RXZiF9rWpMnrjKk/ib8eoYKuG8jYkB0LswDZDnlJ lfJvh9c74NSO33sarJrZ4W2CIIhyq2I+TXZuhL8MYEmjntZLVPvEMRSiai4gzGFfK8EzfBXB HtjWZzwZUv28Iw+pNZMe88T0KUw2gc1zn7JSJbwwnyPiOTAPSXLFOdeagbSP4jVCZ9oRi2Fo r6z0OPam31ivBHWO3m/HXM7dg9QcClhW8yeRzJ/L7LTelQ2cI3eNxMh6eh4INc9xv49ehbg+ 3C2QEhDz1TjzXTVNB+HAk2Pm5u+NauTWUkTZHR2VX7xgyZLSd/2sM83KsVrFZF6qr0L5aAvF ZEtJZ7fasmjvxycplzxm7Gm8Nc9HPlq7CrSVxeYjM8XJMc5H1GSoY+9JGMCNkAmV0KKiCf3m JX4viuzfHbJb14K4B/+ZK39wlWvk2Iane4uDULELsMJKBfl9pRqMSvpivg4IspKLhPGxzCA0 B2RDwteru7I+tdn/N7MjKGCjoGoD+onRxIFQzGEsu7qOHmI5HenzK9BTP2MImLQWWbyz6OoO rdYwvT6B/sYkQsYqIF7Cbtqkfkz6oK39b9XxwhpBlvRaFGvBu8yK3WKx5Mf5IRL2r9DvhOSf W2u0Z9dP7CIM9niC1kfOEwuaeHajaMYnTzb7PIUJkTm5XYupOXbCRoNZ0WB0XUPIqF0PYUpx fYalPQXswHv2AA3NtumjzxP8zveI3EFVZIhvM5IDYLujD0t1VwfM4fXDTX74c3UZthBbhsqL zuTiPaQjrhQ3BafIVwaMCCXmMB73NEJsh0My0IeLVOUnNaDnuUwwBBa7TUwSEJS0wlD1OVwf GNsMhQtd6mJ+j5pgulFXnytRF4eXU3DphSpxgtbjnDdQmmpSnfJcz8wNOOLy0YTrDBRcz1dy 7eHxTu3Sj3tZszwgnA/VBI3sfDlVtAtpATOlNr6RpaAFpg+JDDj26mnYDJXrB29WZ1swkrau eNt4eB8L7XhMjIdqLE6DI/c0qkMTBeDJypJRvQ4pPEFGmTVeTeT3zmSKh/uJZodfaCSqULoW dZzIs9vVgil0Hncoz0eA5kKKeAmkfMs4u0EZb62d3UNtKGSr2YyvZ/dnsQkaLTHnzmzfQcBx oLtm/aqNEW13SERsUmU6c5ONyy/fMUOYxD60Kat6uIVGpkfseZqN0Yvzr+zuHbTOwxil/5Rl B2WfLfYloSO1qw197YA0I0ab+l3FT83fO2O7ACptMxKatzOOoHJsQYUoUPgJANYIf0aXNEfe XGlrovsxE2c1FopezmxpnRCfpWlIe2bWvZXKMXvCF51vADEX8np4hAZ/Hu/J4APm9RYjiViq 81Ud+PoHeMotxxhKLG5psSQ/9vxy0g6U0s4mR6Akg==
- Ironport-hdrordr: A9a23:tKTwKqFq2IfKxXN9pLqFdZHXdLJyesId70hD6qkvc3Fom52j/f xGws5x6fatskd2ZJhSo6H4BEDmewKryXcV2/hnAV7GZmXbUQSTXeVfBOfZogEIeBeOv9K1t5 0QFJSWYeeYZTcVsS+Q2njaLz9U+qjjzEnev5a9854Cd2FXQpAlyz08JheQE0VwSgUDL4E+Do Cg6s1OoCflUWgLb+ygb0N1FNTrlpnurtbLcBQGDxko5E2lljWz8oP3FBCew1M3Ty5P+7E/6m LI+jaJrJlL8svLhyM05VWjoKi+q+GRhOerw/b8y/T9Hw+cxjpAor4RG4Fq8gpF491Ho2xa6O Uk6y1QRPibrUmhNl1d6CGdoTXIwXIg7WTvxkSfhmamqcvlRCgiA84Eno5BdADFgnBQzu2U/Z g7r15xjaAnfi/ojWD4/ZzFRhtqnk27rT4rlvMSlWVWVc8bZKVKpYIS8UtJGNNYdRiKnLwPAa 1rFoXR9fxWeVSVYzTQuXRu2sWlWjA2Eg2dSkYPt8SJ23xdnWx/zUEf2MsD901wga4VWt1B/a DJI65onLZBQosfar98Hv4IRY+tBmnEUXv3QROvyJTcZd860l722uLKCe8OlZyXkbQzveQPpK g=
- Ironport-phdr: A9a23:Z3r0ChH6ZtJUcRxBDpPc351Gf1hChN3EVzX9CrIZgr5DOp6u447ld BSGo6k31xmTAt6QtqsMotGVmpioYXYH75eFvSJKW713fDhBt/8rmRc9CtWOE0zxIa2iRSU7G MNfSA0tpCnjYgBaF8nkelLdvGC54yIMFRXjLwp1Ifn+FpLPg8it2O2+5ZPebx9WiDe/b75+I xW7oRjMvcQKnIVuLbo8xAHUqXVSYeRWwm1oJVOXnxni48q74YBu/SdNtf8/7sBMSar1cbg2Q rxeFzQmLns65Nb3uhnZTAuA/WUTX2MLmRdVGQfF7RX6XpDssivms+d2xSeXMdHqQb0yRD+t6 LplSALziCcfKTE27H3XhMJ3jKJeuh2hphp/yJPQbIyaMPdye6XQds4YS2VcRMZcTyxPDJ2hY YsTAeQPPvpXoYbyqFYVsRuxHhWgCP/zxjNUhHL727Ax3eQ7EQHB2QwtB8gBv2nRrNX0MqcZT Oe4w7PVwjXGbvNW3yzw5ZTOchA9ofGMR7VwcdLXx0c2Fg3LjUudpZbiPzOT0+QNsnSU7/BnV eK0jG4npR1xriKzyccrj4nEn4QYwU3L+itl2og6P8G4SFJlbt6+Fptdrz2WO5ZqTs4sTWxlu Ck3xqEFtJO6YCQHyJoqywPbZvCbc4aF5hLuWfqeLzl4hX9odrGyihKv/EW81uDyWMe63VlMo yFYnNfMsXUN2AbS6siBUvZ88ECh2SyM1wDI9u5EIUc0la3fK5Mvw7M9loAfvljZESPul0X2j bOWdkU5+uez8ejofrLmppqEO49vigHxKL4uldKnAeQ/MwgOWXSb9f6g273k+E30RqhBgP4uk qTBv53WOd4XqrOlDwJXyIov9QuzAym83NkZnXQLNExJdRObg4XnPlzCPez0Auy+jlmpijhn2 /7LM7j6DZjNK3XOlbnscat75kVB0gQ818pf6IhRCrwZIPL8REvxtNvAAxEhLwG6xPrrBMtk2 o4DQWyDH7aVMKTJvlCW/O4vJPSMZJMOtzb6Nvgl4ePhgWUhmV8HeqmpwYUYZ2ykHvRnJEWZZ 2DggtAcEWcWugo+S+vqiF6YXTFPYHayWrow5jA9CI24EYfOXo+gjKCb0CumApFbZHpKBk6RH Xv2bYmJWvcBZDqXIsB7kzwEUbahS5Um1RGrrAL10adoLu/V+i0erp/szt515/HTlREo8jx0F 8Cd02aCT2F1gmwEXTg23KZ6oUx81liDy694g+dfFdxd+/NFSBs1NZnZz+BiDdD9QRrOfs2VR 1a+XtWmHTYxQ8osz9MWeUZyB82ijgzf3yqtG7Iai7uLBIUt/q3A23jxOt1yxm3d1KghilkmW tFAOXenhq557QjTBpTGn1+Xl6awJuwg23uH/WOM0W2W+UVwVA9rTb6DWX0fZ0TW69n1+wmKG 7aqBqggKk5F4cqDMbdRLNnkjVRJRLHuNMmIJyr7l2aqCB2UwamkYovnf2kGmjjBD1IDlRwUu 32Pf0BqCia7rmnCCyZGG1PiZ0/3t/Rir2m8SFMziQqDOQkpnaGx+wM9i/2RT/8ImK8Yvz0mr SlzWl20lZqCEN6BuiJvfahYbch7/UtAz2Xfqws7NZX2a+go2wQSchp2pELp0T1rDZ9Hl9Qtt HQuzQF/b6WellhIPXvMgMr8O6PWMWj1+jizbLTR3E3ZyNGS+6wCrvM+7V7q6kXhXFEp83Jjw dR91nKA5tPXCgtXW5X3VAA7+lIy86rRYi459Y780HRwMe+ptD6H0dUvAq0px0DkN51UN7rBH wvvGeUbAdKvIaokgRLhOhkDJaVZ8LM+F8KgbfqPnqCxarVOhjWj2G1L5YF7mhaF+y99TMbh2 YoF2faA+iyodhy6i1Gks8vtnptDay1UFW26n3u3TLVNb7F/KN5YQVylJNe6k4kv73aMc3tR9 Vr5QkgDxNfsYx2ZKVr0wQxX000T532hgyqxiTJuwHkytqTK+ivIzqz5cQYffHZRTTxrgVLtJ 6CdicwaRk+wSy8GtTDj4kD/xqNBo794IXWVSkBNLGDtN283aqKrrfKZZtJXrpYhsCFZSuO5N FmWT7/7ixIczyP5GHNawz86fHetvJD4lAZ9k2WTMDB4q3+KMdpoy0Ln7cfHDeVUwiJARCR8j mzPAUOgOtCy4diOv7Hql7jkEkiHD9hUeyStyp6cviym42EsGQe4g/24htzgF049zDP/0N5pE y7PqX4Qe6HN0KK3eaJid0hsXhrn7tZiX5t5mc02jY0R3n4TgtOU+2AGmCH9K4cT36W2d3cLS TMRprydqAH4xE1uKG6IzIPlRz2cxMVmfdyzfmIR3Go08clLDK6e6LEMkzFypxK0qgfYYP41m Tl4q7Nm4XIfguchkQwxzj+aGpQ1MmhzeyvqkhWD9delq6tLIm2odPn41UZzm8ygEKDXuhtVC xObMt8pGS596Nk6MUqZjCW1s9m7PoOJN5RN607x8V+IleVeJZMvm+BfgCNmPTi4png506shi hco25imvY+BImEr/aSjAxceOCemAqFbsjzrk6tamd6bmo61GZA0UDwHWZruZfuuDDIIsuzjM AmPG3s7rHKaEqDYBgiR9AFtqHeFQPXJfzmHYWIUy9lvXkzXLUBagQY8dTMmnoQ+DiSN6+3KN kB/4zEa/FnjrRVQjOlvMlOsNwWX7BftYTAyRp+FKRNQ5QwX/EbZP/uV6edrFj1Z9JmsxOCUA lSSfB8ATWQAW0jeQkvmIqHr/97Lte6RGuu5KfLKJ7SIs+1XEfmSl9qj1Y5v/jDEMcvqXDEqB vE+20xrVHZlG97egzEIRC0c0SXLas+QvhCn/SNr6Mu49bznVRnu6o2GF7ZJeYk3vUnu3uHZb rTW2nscS34Q34hE3XLSzbkDwFMewzpjcTWgC/VItCLASr7Rhr4CChcaby1pM84bisB0lgJJO MPdlpb0zusk1rhsUwgDDwW73J/0NqloaymnOVjKBViGLuGDLDzPmYTsZL+kDKdXh6NSvgGxv jCSFwniOC6Cnn/nTUPKU6kEgSeFMRhZoIz4fAxqDD2pRd7jaxuTOdlrjScx2bkziXLBc2kaN Dl3aURWqbOMqyhfh78sfg4JpmogNuSClyuDuqPRJpMXt9NiBDh0jeVC5HM1yrAT6ydBRfdvn zDVoMIoqFaj2LrqqHIvQF9FrTBFg5iOtENpNPDC95VObn3D+QoE8WSaDxlZ78sgENDkvLpcj 8TejK+mYikX6MrapIFPYqqcYNLCKncqNgDlXSLZHBdQByD+LnnR3gRciK3AqiXT/8J88t603 8NTAr5DCA5pTrVDUhsjRJpaZ84pO1Fs2b+D0JxVvzzn9EGXHIMC+cmbHvOKXae2cGrf0eYCP 11QhuqnZYULaN+h0hQ7OAAjxdbERxKID4IK/n0EDEd8oV0ToiJ3FjRhghu8OA3xuCRBR7noz lY3jAB6fOggpiz07VtxPkDNuCY7jEg2n5PinCyVdznyaqy3WOQ0Q2Kxvkw1ePsXWi5NZBap1 QxhPTbAHfdKiqd4MHpsg0nasIdOHvhVSetFZgURzLeZfadg3VNZoyShjUhJgImNQYNljxcve IWwomho/StGNIRwD4qJYa1Dwx5Xm76EuTKu2qYp2ggCKk0R8WSUPikVpEgPMbpgLC2tm44ko QCPgDpMfmEQWuFi/qosrxtifb7ZlWS+jvZKMQipOvaaLr+FtmSIjsOOTl4qlwsJm0RD4blqw JIjfk6TBCVNhPOaExUEM9aHKBkAM5IUrSCMO3zX66OTnMEQXc31DO3jQO6QubxBh0ulGFxsB IEQ9oEbGZLq1kjELMDhJbpDyBM35Q2tKk/WaZYBMB+NjjoDpNmyiZFt2owIbDgRBGR7GSyx+ rbNoRcuh/WCV5ExZHIbVZEDLXU4RIuxnCsT7BEiRHGnl/kUzgSP9Wq2viPLEDz1dMZuft+yT DY0UpSc32x69KK7z1nK7p/ZOmf2c8x4vcPC4v8boJDBDO5ISb56sAHXnIwSFBnIGybfVNWyI Zb3cYwla9f5X227XlKIgDUwV87tPdypI/vAkUTySI1TqoXewCE7OJr3CGQFAxkp7bJmhuo0d UgZbpE8exKtqwkuK/n1PlKDytv3C2e1dWkKF78Ol6PiIeQQlndkb/fmmid4CMhikK/vtxZKH c9v7FmWxO7/NdQEF3GrQjoFPV2I/HZxlnA9ZL9qnqFjn1WQ9wFbam/DdfQ3OjZN54huXArLc 3sqUjJqFRjA3e+hqkatx+5ApSIFxoQNiLQXviSm5c2NJ278EK2topHIvydydsAor+tpK4v/L 8CatZTY2DvCUJ3XtQ7DWym/cpgS0p1ZJCYSKBGnsWgjJcwcvpJF7kUwXYE5IblOA7Mrvbekd XxvCitAlEfxsqup2iACmOCk/5z1tzzWd5InMRcet45FjMdbWClzMHt2TE6LcazzzzXBYE5SZ QAZ4EJL+R4KkZJ2cqb9+o3UQZRQyjlQ5fVpTi/MEZou/Fz+GDj+vA==
- Ironport-sdr: 4ID2xdqmR/mE0v+aCqxx+bqBqtsUTFeKro0BZSKTz+p08F9zw1txtHPKMjk49SFU2BiMoHekyD EoLx/kNBHS0X5+OZANCxpVgxA/54i9IChi0Y2wU4fyg8C5p4ADg6Yk+XuoKb94PTbN1D35Z/cN 9Bbp07felGzh8n7SMk3IFD2mrInaoCDARTMTOxryC6zrspIw/aX6lGjJIVyaZcHCrtaX4fF2kR lczQGKxWmW/Tyr2Dpsva1vnXKxIbBGk2CNmytVE3y7fvsQuvrdxWfdHVBsb2OoHxA0MPTbfsnX +PizrF9sGhiN+USfvfPLeTXV
Dear director Kumar Murty of the Fields Institute,
On day 30th of June 2022 at the Max Planck-Fields twinned conference in
homotopy, your delegate Shane Liu哥 has failed the Fields Institute's mission
that « a place where mathematicians from Canada and abroad, from academia,
business, industry and financial institutions, can come together to carry out
research », has failed by using the emergency enforcers (police constables)
to force the denial of my access to the Fields Institute's stated mission,
despite that there was no emergency. This denial of access was on the ground
of disability-or-perceived-disability because your delegate intoxicated-liar
Shane Liu哥 did feel that his interlocutor is incapable (defenceless,
vulnerable, disenfranchised, impotent, helpless, disabled) enough that he
could use the emergency enforcers despite that there was no emergency and
that there are alternative accommodations that preserve the Fields
Institute's mission. You are kindly invited to continue this dialogue at the
upcoming HRTO Tribunal file 2022-50344-I, or at the Police station, lol. You
could remedy by cohosting my twinned workshop:
CfP: Workshop on proof-assistants, sheaves and applications, collocated
around Ehrhard's 60th at CNAM Paris on 29 September 2022
Registration for authors and qualifying reviewers at: https://WorkSchool365.ca
Context: H¹(Δ²) = 0, H¹(S¹) ≠ 0 grammatically ?
https://github.com/1337777/cartier/blob/master/cartierSolution11.v
https://anthroplogic.sharepoint.com/:w:/s/cycle1/EawPJF6xy0JJvnIetDv3Nt0BZohPMCYmdwqGCHF-LOT1gA?e=4ghBF8
For the computer, the relevance of "how" is witnessed onto the grammar/syntax
and thus cannot be avoided, and Per Martin-Löf "equality of equalities"
becomes, when taken seriously, (cubical) homotopy-path types (hott). Then the
elimination principle for such path types, which should be some monodromy
principle for locally constant sheaves, suggests the mediation via some
univalence-axiom. Elsewhere Kosta Dosen cut-elimination confluence techniques
in category theory provide some direct-encoding alternative to type theory
(internal-logic encoding). Moreover the simplicial methods, instead of the
globular/cubical shape of the boundaries, seem to be the better context for
(Cech) sheaf cohomology, quasicategories-operad algebras...
Concretely this attempt at grammatical sheaf cohomology has shown that H¹(Δ²)
= 0, H¹(S¹) ≠ 0. The augmented cochain complex for the (barycentric
subdivision of the) 2-simplex Δ² is acyclic: the contracting homotopy is some
grammatical (possibly-incompatible) gluing operation of the presheaf. Indeed
the existence of semantic models satisfying such postulated grammar
operations is demonstrated (by using the barycentric U0 U1 U01 as the good
cover instead of U0 U1 ...). Finally the circle S¹ specifies some hole in the
nerve of this 2-simplex Δ², thus breaking this acyclicity H¹(S¹) ≠ 0 (for the
twisted locally constant sheaf). In full generality, with Kosta Dosen
techniques, it should be possible to program the nerve of any topological
site with structure (co-)sheaf, its (possibly-incompatible)
gluing-differential and (co-)sheaf (co-)homology, up to any (Verdier) duality.
Here is the outline for the implementation of the idea (in COQ mathcomp
ssralg). The nerve inductive type (where structCoSheafO could come from
duality or from extension by 0, Stacks Lemma 00A4) is approximately:
Inductive nerve : forall (dimCoef: nat) (cell: seq vertexSet), Type :=
| GlueDiff : (_ : structCoSheafO [i_0; ... i_n])
(coface : forall i, nerve dimCoef [i; i_0; ... i_n] )
(face : forall j, nerve dimCoef [i_0; ... <i_j>; ... i_n]),
nerve (dimCoef+1) [i_0; ... i_n] | Diff : ... | Empty : ... .
The presheaf record structure is approximately:
Structure shfyCoef_struct := { shfyCoef : forall (cell: seq vertexSet), Type;
restrict : forall j, shfyCoef [i_0; ... <i_j>; ... i_n] -> shfyCoef [i_0; ...
i_n];
glue : (f_ : forall i, shfyCoef [i; i_0; ... i_n]) -> shfyCoef [i_0; ... i_n];
_ : restrict (glue (fun i => f_ i)) = glue (fun i => restrict (f_ i));
_ : glue (fun i => @restrict 0 f : shfyCoef [i; i_0; ... i_n]) = f; ... }
Then the definition of the gluing-differential operation is approximately:
Definition diffGluing : (ff_ : forall cell, nerve dimCoef cell -> shfyCoef
F_sh cell) ->
(forall cell, nerve (dimCoef+1) cell -> shfyCoef F_sh cell).
Finally the homotopy to the null-complex when the nerve has no holes is
approximately:
glue (fun i => restrict 0 (ff_ [i_0; ... i_n]) +
(\sum_(j < n+1) (-1)^(1 + j) * restrict (1 + j) (ff_ [i; i_0;
... <i_j>; ... i_n])))
+ \sum_(j < n+1) (-1)^j * restrict j
(glue (fun i => ff_ [i; i_0; ... <i_j>; ... i_n])
+ \sum_(k < n) (-1)^k * restrict k (ff_ [i_0; ... <i_k>; ... <i_j>; ...
i_n])) =
ff_ [i_0; ... i_n]
This setup is similar as the acyclicity of the mapping cone of some (gluing
with shift -1) quasi-isomorphism, so that the shift is now -2. And this
acyclicity proof is new, when compared to the Stacks Project Lemma 03AT,
Lemma 0G6S, Lemma 01EM, Lemma 01FM, Lemma 02FU. This setup contains the proof
that d ∘ d = 0, which should rely on the usual simplicial face relations δ_j
∘ δ_i = δ_i ∘ δ_(j+1) for i <= j; however grammatically it becomes relevant
how those faces-of-faces are specified and oneself may care about relevance
up to d ∘ d ≠ 0 with d ∘ d ∘ d = 0 ... As for the Scholze Lean experiment,
the first step has been some acyclicity proof.
The generalization to computational logic constructors is by recognizing that
the pullback-sieve and the sum-sieve should be blended as
sum-of-pullbacks-sieve in the definition of topological sites, approximately:
| GluingDiff : (sievesV_ : for all G with Site( G ~> U | in sieveU ), for
some G' with Site( G ~> G' ),
is-sieve at G' refining-the-fixed-cover)
(u_ : forall j, Site( G_ j ~> U | in sieveU ))
(ff_ : forall j, PreSheaves( Nerve structSheafO (sievesV_ (u_j)) [u_0; ...
<u_j>; ... u_n] ~> Sheafified F ))
⊢ PreSheaves( Nerve structSheafO (sum-of-pullbacks sievesV_ over sieveU)
[u_0; ... u_n] ~> Sheafified F )
The significance of such research programme, prompted from the mathematicians
Kosta Dosen and Pierre Cartier, is similar as the significance of homotopy
type theory or differential linear logic. Earlier COQ proofs of
cut-elimination confluence for Maclane associativity coherence (the pentagon
is some recursive square), adjunctions, comonads, cartesian products,
enriched categories, internal categories, 2-categories, were published. This
is sufficient evidence to "pay" long-term attention into this research
programme.
- Re: [Coq-Club] [ALGTOP-L] twinned conference: homotopy — [CfP] H¹(Δ²) = 0, H¹(S¹) ≠ 0 grammatically, admin, 08/25/2022
Archive powered by MHonArc 2.6.19+.