coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Frederik Krogsdal Jacobsen <fkjac AT dtu.dk>
- To: Rajeev Gore <rajeev.gore AT iinet.com.au>
- Cc: <coq-club AT inria.fr>
- Subject: Re: [Coq-Club] Proof about permutation
- Date: Mon, 2 Jan 2023 09:20:08 +0100
- Arc-authentication-results: i=1; mx.microsoft.com 1; spf=pass (sender ip is 192.38.82.195) smtp.rcpttodomain=iinet.com.au smtp.mailfrom=dtu.dk; dmarc=pass (p=quarantine sp=quarantine pct=100) action=none header.from=dtu.dk; dkim=none (message not signed); arc=none
- Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-AntiSpam-MessageData-ChunkCount:X-MS-Exchange-AntiSpam-MessageData-0:X-MS-Exchange-AntiSpam-MessageData-1; bh=NcfoGKLo/dGYBFRk+0q2/7u627uf97oYBsIvlZJYp+Q=; b=PE2a4/7/bspWP+Nph2nC/df1xXsdOnIZeYR0S/maM2ccJZ7Hxwvq5aFq2IL5EqitmMnNeggoEYcmbL9WPVh/wKa0trrfqfvYFqLtYeTd9dlP1ErOw+rNCiQXpjsiVk1p29qgOLAcoBiHgfhzTmelHyKjjG/j6Hl+HJPmbvqMTxqCoubDa2kyADKB4/IBpZ92z7utdxh+tJY4mawGO6rnZ/2nui36/ZIIPtkQ3cu2q3Se8bMgLLrs6MXRh1VP5pbfSsIt1cpYJ96L/uArOI9dBlKnJrZMV2nAjgCJK0fmZWqIEZV7P6CgitzrnLsRUOFrqVhK3tfD5l061huF1Qp+FQ==
- Arc-seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=bOvDWY6TRbGx7EHa58LK4vU6wU/CKa4SJeYCCeVzWLeirwb4EgT8/uJUo1oEEM/yfNch7Z6xHNyFVjfS5fKNls4alSgvpxeVeJqnZb0CwmwYHR04Q2y45JOnBkyRftJXVXej41KD/1BzHnh1ukQti0LM6V6Jl2foWdBxnVs3bbOsnZxo9Vo3oTVn1uNMnDLA4LnE5UHbFbTT0vqyXmd4L4pdyaRrOcgz2hod9kdmYUvvIeFx3Qvp6UaHegQ59WoI6+dhM4uwEDngDYJYKYLLVhQfRGMtnQmvvBjMow9CAvk1mouOyLcUsA1G8jzuQ7PdiNyc87U8Qf36gtFCXmXyMA==
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=fkjac AT dtu.dk; spf=Pass smtp.mailfrom=fkjac AT dtu.dk; spf=Pass smtp.helo=postmaster AT EUR04-VI1-obe.outbound.protection.outlook.com
- Ironport-data: A9a23:PvSE/qrNMQy4q/7w1VuJdQJM5UleBmJVbxIvgKrLsJaIsI4StFCzt garIBnSO/yIZGr1f40lO43g/B4O75XTx4JkSlBl+X8wE3hDo+PIVI+TRqvSF3PLf5ebFCqLz O1HN4KedJhsJpP4jk3wWlQ0hSAkjclkfpKlVKiefHkZqTZMEE8JkQhkl/MynrlmiN24BxLlk d7pqqUzAnf8s9JPGj9SuvzrRC9H5qyo42tB5gVmP5ingXeH/5UrJMJHTU2OByCgKmVkNrbSb /rOyri/4lTY838FYj9yuuuTnuUiG9Y+DCDW4pZkc/DKbitq+kTe5p0G2M80Mi+7vdkmc+dZk 72hvbToIesg0zaldO41C3G0GAkmVUFKFSOuzdFSfqV/wmWfG0YAzcmCA2kbPbAZ67t7JF1f2 vsTJTcQSh+4iPi5lefTpulE3qzPLeHGAblH5jRe7GicCvwrB5feX6/N+NlUmi8qgdxDFurfY MxfbidzaBPHYFtEPVJ/5JAWwL/u3yGgNW0e9w79SakfuwA/yCR/07rkO/LZZsHMScY9ckOw+ jmXpDukWUxy2Nq35Ri8yUqLweL1xirdVbIfOI+S0PFHjwjGroAUIEZPDgDj+KPRZlSFc9lYM gkf/jckhbMj8VSiCNj7RRyx5nCe1iPwQPJVGuw+rR+Mk6fJ+V7FAW5eFmEdLts7qMUxWDomk EeTmM/kDiBut7vTTm+B8rCTrnW5Pi19wXI+iTEsYAs44si+rKQPnz3IRdtkDYq6tdLvFmSlq 9yVlxQWi7IWhM8N8qy0+1Hbnj6hzqQlqCZlu207uUr1sWtEiJ6Zi5+AtQiBtaoQRGqNZgDf5 yZawqBy+chUVfmweDqxrPIlNY3BCxytDjzRh1hmd3XK3231oibLkWx43jBzIkFgWvvolBfsa U7X/B1QvZJOJiP2aqktO93tTcM30aLnCNLpEOjOacZDaYRwcwnB+zxyYUmX3Cbml01EfUAD1 XWzIZ3E4ZUyUPQPIN+KqwE1jOdDKscWmD+7eHwD5077uYdynVbMIVv/DHOAb/oi8ISPqxjP/ tBUOqOikksACrCvPXmNqtZIfTjmyETX47im9aS7kcbTcmJb9J0JUaW5LU4JJ9I1w/QKzbmgE o+VAxMHlQWv7ZE4Fel6Qis6M+i3BMwXQYMTOC0nJ1Gz3HY/KY+98b0SH6bbjpF2nNGPOcVcF qFfE+3ZWqonYm2ep1w1MMehxKQ/KkXDrVzUY0KNPmNlF7Y+HFOhxzMRVlCynMX4JnHr7pRWT nzJ/l+zfKfvsCw7XZmKMK7wngro1ZXf8corN3b1zhBoUB2E2OBXx+bZ15fb+ulVcEudlAiJn R2bGwkZruTrqoo4uouBz6OdoovjV6M0EkNGFiOJpfy7JAvLzFqFmIVgaeeveSyCdWXW/K75W /5Z4cuhO9I6nXFLkbFGLZBV8YwE6eHS+oBqljZfIC2TbnCAKK9RHX2d7Mwe6oxP3uB4vCW1a GKu+/5bG7aFGP74InEKJS4OTOeK5dcLkBb8sNU3J0Tb4nds3bylCE99ATiFuBZ/HpBUbrw34 L4GlpYNygqdjhEKDI63vhpM/T7REk1aArQViJ4KJaTK1Cwp8whmSr7BAHbU5JqvVY19AnMyK GXJuJuY1qVu/WucQX8dDnOX4PF8g64JsxV0zFMvAVSFt97Gp/0v1i1q7jUFYVVJ/ypDzt5MF DBnB29tKYWK2gVYtsxJcmSvOgNGXROi6hPQzXkNnzbnVEWGbDHGA1A8Huevx3on1VxgUAJVx 5yi81a9Yw3WJJnw+gAQRX9ar+fSSI0t1w/ax+GiMce3P7g7RjvHgaOOWHc6hADmJegTh0T3g /Zg08gtSK/8NA8W+7YaDavD35suaRm0Hk5watA/w7EoREbyICqT3xqKIGCPIvJ9HeTAqxKEO pY/N/BxWASb/wfQiDIiXIonAaJ+xdwt7/o8IoLbH3YM6eajn2A4oaDr13bMgUEwSI9Tiuc7E ITacgyCHkG2hXd5n2zsrtFOClGnYOsrNRHN4+SozNonT54zkvlgUUUX4IuGu3+4NAhG/RXNs jjTOI7Q7ehpkrp3k6XWT65sOgSTKPHIbtquzjydidp1QO3qDdbvrCIQ81nuABRXN+AeWvNxj rW8j+T010Lk4pc1bV7kmbDZM5d7x+CJBfRmN//qJiJkxRqHCZbm5iIe8ECaN5BmrtFRyc25T QrldseAT8UfAYZH4HhzdSJlMg08Dp7vZfzKvhKNrPWrCzkc3zfYLdihy2TbUGFDegIMOLz8E gXRqd/3wvx59aNnGw4iFfJ9Jp13Mm/YRqotcuPuuQmiDmWHhk2Ivp3gn0EC7Q7nJ2alEsHox 4DsXTn7KQqPvZ/XwOFjs4BdugMdCFB/i7ISemMf49tHtCCoPlUZLOgyMYQ0Nb8Mq3bcjKrHX TDqaHcuLQ7fXj4eKBX134nFbzelX+cLPo/0Gywt80aqcByJPYKnAoUw0gd74nxzRCnv8/H/F /Ea5U/LH0aQxrNHeL8tw8KV0MZd6NHU+3E2wHzTl/HOEjcFILBT1HVeDAtHDiPGNMfWlXT0H 2s+REEaYUS/VEX0FcZEfkxEORAGvQHAyycjQjePze3+5aSa7rxk49/uN97j1oYsaJwxG4cPY nfsVk2PyWyy8V4Ci5sD4t4Gr/d9NqOWI5KcMqTmezw3o4ixzWYWZ+U5gisFSZAZyj51Sl/yu GGl3CkjOR6jNktU5byxzDcJ8bJXVlYnLWnArCz7lA/8vS0J9frrUDn081ujMrD1kbbpgGtAS jRLbEqxnUyfhAG5mRZA7MYktn61KuBPM0mdXi4RG8a41l/mTWJGD7lu3n0rz98bojUO2oxQc 73XyNknvp6uWiSUxQ3/gdMFef5doqwcHhgYwarclP6x+gBcCKugGzp4Flq7curWqTxLYwxdl /PyMhnYAw+QthRNVDt4vcGXU4Z79rmzy7M/7hM4ENxevbiflJMYnvZUJCGwLR9OW/zpuZmrN S3sDTSTSH7b4m0BruBcnkt+/oewFSdG6B36nkW9XLOI//HvxoyrKOehDqcow9DsQX4L16LLJ fDsaaiale0IL25Td6k5E51cQ07F/fSJLlgodiDD
- Ironport-hdrordr: A9a23:JpUZZKCaxDPOAtblHeiTsceALOsnbusQ8zAXPh9KJCC9I/bzqy nxpp8mPR+dskdtZJhSo6H6BEDgewK4yXcR2+Us1NiZLW7bUQeTXf9fBM7Zskzd8k7Fh4hgPM VbAsxD4bTLZDAU47eYkWuF/s4boOVvsprY+ds2qU0dMj2CA5sQnzuRYTzranGeKjM2f6bRWK Dsn/au8FGbCAYqh/CAdww4tqX41pD2vaOjRSRDKw8s6QGIgz/twLnmEyKA1hNbaD9LyadKyx mMr+SsjJ/Dj9iLjjvnk0PD5ZVfn9XsjvFZAtaXt8QTIjLwzi61eYVIQdS5zXIIidDqzGxvvM jHoh8mMcg2wWjWZHuJrRzk3BSl+Coy6kXl1USTjRLY0I/ErQoBeo98bL9iA1rkAgsbzZ9BOZ twri2kXk9sfFP9dCeU3amAa/glrDvxnZMYq59ks5Vua/prVFZvl/1pwKp0KuZKIMuo0vFsLA A4NrCu2B8RSyLXU0zk
- Ironport-phdr: A9a23:pQnD3RfhLU0xDkrnQNkQ8cWdlGM+idbLVj580XLHo4xHfqnrxZn+J kuXvawr0AWUG9qCoKsd1KL/iOPJZy8p2d65qncMcZhBBVcuqP49uEgeOvODElDxN/XwbiY3T 4xoXV5h+GynYwAOQJ6tL1LdrWev4jEMBx7xKRR6JvjvGo7Vks+7y/2+94fcbglWhDexe7F/I Ai5oQnMq8Ubg5ZpJ7osxBfOvnZHdONayH9yK1mOhRj8/MCw/JBi8yRUpf0s8tNLXLv5caolU 7FWFSwqPG8p6sLlsxnDVhaP6WAHUmoKiBpIAhPK4w/8U5zsryb1rOt92C2dPc3rUbA5XCmp4 ql3RBP0jioMKiU0+3/LhMNukK1boQqhpx1hzI7SfIGVL+d1cqfEcd8HWWZNQsNdWipcCY2+c oQPFfIMMvpboYfzqFQBowawCxeyCePh0D9Ghn353awh3us7DQ3LxhYtE84AvXnWqtj+KaccU fqyzKnN1TjNb+lW1ing54fWaBAhoPKMVq91f8rLzkkvGBjFgUiKpozhIjib0v4CvHSc7+V7T uKglWgnoBx2rzihxccsiJPGiZ4Ox1/Z6SV53Zw5KsC7SENiZ9OvDZRfuT2AOYRsXsMiX39nu Dw8yrAepZK2eCgHxZYjyhDQd/GLb4eF7xzsWuiePTp1hnxrdbGxiRqu80WtxOPyWtW03ltEr ydIkNvBu3MM2hHP9MSKSf1w9Vqv1zaI0gDc8OBEIUYsmKrUKp4h3r4wlocIvkjZAiD2n0D2g amLfUsn4uil8+vqbqn8qpOBK4N5iBvyP6c0lsG9Duk0KhUCUmyF9eim2rDu/lf1TbZUgvEsk aTVqI3WKMAFqqKjDQJY0Zwv5hWhAzu8zdgVmXkKIVRYcxydlYfpIUvBIPXgAPe/nVuslDBry ujJMLLvHpvBMnfOnK7ucrh+9kJQ0Q0zwstB6J5ODbEBPe7zVVT2tNzFCB82Lha4w/79CNV6y oMRR36AArOYMKPVt1+E/OUvI/SQZI8Rvzb9LPsl6+Tygn8+nF8RZaip3Z0JZ3CkBvlrLFmVb WDxjtsdE2oGpAkzQPbohVCNSTJTYmy9X6M45jE1EoKmCoLDS5ijgLyC3ie0BIFZa3tbBVCQD HfkbZiLW/QUZCKUOcBuiiYEWqS5S489yRGusxf3x6d/IurO5iIYrY7j1MRy5+DLiR4y8iV0A 92B3GGJUmF7hXgFRyQ23aB6uUxy0E2P0al+g/xCFNxc/elFUgkgNc2U8+svMdnwVw/fNviOU lvuFs+vAzw8UJQ+xMUDS0d8Hdi+yBvE2myjHulGrbGTAI0I9feI1H/oYs151nzu1a87jlBgT NEZZkO8gasq2RLeC4PTkkbRtLyter8Q1SqF1m6IymCVsUcQBABzU6zOdXwDew3aroKqtQv5U 7ayBOF/YUN6wsmYJ/4PM4Wx5b0nbPLqOdCFJnm0h3/1HhGQgLWFcIvtfWwZmiTbEkkN1Q4Jr j6dLQZrICCnrirFCSB2U0r1ahbi8ut3o1u3UlJywwLZJ1Z52e+N8wUOzeeZV+tV27sFvCk7r DAhElW/1tn+B8ad4QZiL+1Hed1o2F5czirCshBleJytK6c3nlkFbwF+pF/jzT1aN78YzY0Uj SpvywB/b6WFzFlGajWUm4jqPaHaIXXz+xbpbLPK3lbZ05Cd/aJnBO0QjVLlsUnpE0Mj9y4iy NxJyz6H4Y2MCgMOUJX3W0Jx9h5gpricbDNvr4XTnWZhN6W5qFqgk5ogGfclxxC8ftxeLLLMF Qn8FNcfDtSvL+pikkagbxYNNuRfvKAuOMbue/yD0a+tdOFu+VDuxWpE4ol2+k6Q6mxwSa+A3 poIxe2ZwhrSTy313x+qtsH6n5wBZClHQjL5kHC7Qt4XOfEhGORDQX2jKMC22Nhk0pvkWnoDs UWmG0tDw8ixPxybc1362wRUk0URu32u3yWinFkW23kkqLSS2CvWzqHsbh0CbyRFR2trhn/gP ZXyg9NQDwC4KhMkkheo/xOwyatZra9XI3XOB0tLNXuTTSkqQu67sbyMZNRK4ZUjvHBMUeiyV ludT6b0vxoQ1y6L83J2/DkgbHnqv5z4m0c/k2eBNDNoq2Kff8hsxBDZ7diaRPhL3zNASjMqw TXQA1G9OZGu87D239/NseK3XEqtSoAVfSqjwY6btSS97HFnGlXjx7bqwoKhQU5ljWfyzJFyW D/NrQrgb4WjzKm8Pe99PywKTBf958d8BoBig941jZAU12Idg8bd9n4GnGHvdNRDjP6mKiNVG nhbhYGJs22HkAV5I3mExpz0TCCYy8plPJyhZ38Onzk694ZMAbuV67pNmW10pEC5pETfe6sY/ H9VxP0w5Xodm+xMthAqy3DXDLMQFEJwMTDx0RiLpYP2vOBMaWCjfKLlnkR9n9mqJL2ev0dQW zyqH/VqVT815cJ5PlXW1XT14YyxY9jcY+UYsRiMmgvBhexYe9oh0+AHji19NSfhrGUonqQl2 Ad208jw7+3lYy19ubi0CRlCOnjpatMPr3vz2L1GkJ/e3pjzTMk5XGRRGsOuFbXxTXoTrai1a 17ISWVj7C/dQf2GQ2r9oA9nty6dTsrtbinPYiFflZI7GFGcPBAN2VhIGmll2MZ/Tkfzm4Tga BkrvDlJvwyh80IexL4wb0utFTuPwWXgIjYsFsrFJUIPvFgbvhXbbZTFvLA0Q3AQ/4X//laEc jXJPl0RX29VAhfWVwi7Zuv8ooSYlorQTuumcamUaO3X+7UHDqWGmcr0gIA+p27eZILSZzFjF 6NpgEMbBCIgQp2LlWlXEH4Zz3qVPZzc+U3ZmGU/r8a09OnnVVD0/YWDTaNINsli8Ay3hqHFM POMgCF+KnBT0ZZEgHbMzPJ3MEc6syh1bHHtFL0BsXWIV6fMgupMCAZdbSpvNcxO5qZ63w9XO MedhMmnnrJ/i/c0DR9CWzmD0omxYtcWJmimKF7dLGu2DuzaYAPqmoTwa676TqBMhuJJsRH2o SycD0LoIjWEkX/uSgyrNuZPyiqcOXk88Mmxfw1sBm7qUN/9IkHjdoYv0ntmh+JoznrRfXYRK z19b19AovWL4CVUj+8+U21N43x5LPWVziaU6+6LT/Re+fBvAylyi6db+CFmk/0MtH4CFLoqx Hi3zJYmuVytn+iRxyAyVRNPrm0On4eXpQB5Pr2f8JBcWHHC9RZL7GOKCh1MqcE2b7+n861W1 NXLk7r+bTlY9NeBt8UfBcHfAM6bLTwtMlC6fVycRBtAVjOtOWzF0gZFl+qO83SOspUggrXRo sJSD4F6DRkyHP5cDVl5FtsfJpsxRikjjbOQkM8P4zy5sQXVQ8JZ+JvAU7jBZJenYCbchr5Ca RwSxLr+JolGLYz31XtpbVxilZjLEU7dDphd5zdsZQgurABR4WBzGyctjln9ZFrnsxpxXbak2 wQ7gQxkbaEx+Sfwth0pc0HSqnJ4kVFty4m9x2HLNma3dODpAMlXE3am6xB3a8ukBV4zNUrrw ykGfH/FX+4D0uEmLDgzzlea4dwWRbZdVfEWOUdMg63IIa1uiRMF9W2m3REVv+KdUMk7zVJ4f 8L09yASnF4zCbx9ba3IevgTxwAJ1PvX532mirhqkl1ZexdF8XvMKnQB4BVab+B/dST0prc+u VTaw2kRPzVUMphi6vNyqBFnMrzZnXu5iuxNdhjqZefHd/vL6S+dzIaJWg1ijEpQzhscpOEk3 5t7KBiaDxh3nunWSk5sV4KKKAdea9de+SrIZSiC9/3Xxo54NJm8EeauSvKSsKETgQSvGwNhW o0I6o5p9nyE3F3Fa8vkfuZtIfQFyTnRfAnAMtUQPRWBnXEAvt21y4Jx0c9FPDYBDG5hMCKxo LHKugsth/nFV9AzMC5ytmQsOm4rHsG5yXcxgg==
- Ironport-sdr: 63b293c1_HkYoVN7L9tnFhxrhkV+A0TKmx/B2GowZLRCKLA4cj38GYD7 8fbb1xyxNTJo1aWUPecyKd8u5FW5d+Jy+O//5zw==
Dear Raj,
A few months ago I also spent some time thinking about how to
represent a sequent calculus and a prover for it using the
existing multiset package (MSets) so that I could "easily" prove
soundness and completeness of the calculus and prover.
I am not a Coq expert (I usually work in Isabelle), so I'm sure
my formalization can be improved significantly, but maybe seeing
it could at least be helpful for getting a taste of some
possibilities.
My lightly commented development is available here:
https://github.com/fkj/coq-microprover
I should note that my approach is heavily inspired by similar
developments in Isabelle and Agda by J. Villadsen and A.H. From.
Cheers,
Frederik
À: "Rajeev Gore" <rajeev.gore AT iinet.com.au>
Cc: "coq-club" <coq-club AT inria.fr>
Envoyé: Vendredi 23 Décembre 2022 07:00:51
Objet: Re: [Coq-Club] Proof about permutation
Hi Mukesh,
> I don’t much about sequent calculus (even though I was a part of ANU
> logic group for a long time :)),
Shame on you :)
> but my use case is to deal with an equality (equal_finite_sets) in a sane
> (* multiset represented by list *)
> Definition finite_set {A : Type) := list A.
>
> (* two multisets are equal *)
> Definition equal_finite_set {A : Type) (xs ys : @finite_set A) : Prop :=
> forall x, In x xs <-> In x ys.
> etc
But there is already a multiset package in Coq, so why redefine it?
I am trying to wrap my head around the existing multiset package in Coq,
and in particular, how to use it to define sequents built from multisets
in a way that is comprehensible to a proof-theorist (not a Coq expert).
raj
- Re: [Coq-Club] Proof about permutation, D. Ben Knoble, 12/23/2022
- <Possible follow-up(s)>
- Re: [Coq-Club] Proof about permutation, Rajeev Gore, 12/23/2022
- Message not available
- Re: [Coq-Club] Proof about permutation, Rajeev Gore, 12/23/2022
- Message not available
- Message not available
- Re: [Coq-Club] Proof about permutation, Rajeev Gore, 12/24/2022
- Message not available
- Message not available
- Message not available
- Message not available
- Re: [Coq-Club] Proof about permutation, Frederik Krogsdal Jacobsen, 01/02/2023
- Message not available
- Re: [Coq-Club] Proof about permutation, Rajeev Gore, 12/23/2022
- Message not available
Archive powered by MHonArc 2.6.19+.