coq-club AT inria.fr
Subject: The Coq mailing list
List archive
Re: [Coq-Club] Job offer — [CfP] CT2023 workshop on implementing Dosen's categorial programming
Chronological Thread
- From: admin <admin AT AnthropLOGIC.onmicrosoft.com>
- To: "cyril.cohen AT inria.fr" <cyril.cohen AT inria.fr>, "tim.vanderlinden AT uclouvain.be" <tim.vanderlinden AT uclouvain.be>, "categories AT mta.ca" <categories AT mta.ca>, "coq-club AT inria.fr" <coq-club AT inria.fr>
- Subject: Re: [Coq-Club] Job offer — [CfP] CT2023 workshop on implementing Dosen's categorial programming
- Date: Fri, 3 Feb 2023 12:37:11 +0000
- Accept-language: en-US
- Arc-authentication-results: i=1; mx.microsoft.com 1; spf=pass smtp.mailfrom=anthroplogic.onmicrosoft.com; dmarc=pass action=none header.from=anthroplogic.onmicrosoft.com; dkim=pass header.d=anthroplogic.onmicrosoft.com; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-AntiSpam-MessageData-ChunkCount:X-MS-Exchange-AntiSpam-MessageData-0:X-MS-Exchange-AntiSpam-MessageData-1; bh=1GNcA6yzPiyzpQEPbWNgKO9Yw+/3t/XoThJik3Zz5l8=; b=bL7bjQHzyaDsfv172f0O58yLB6iGcKdWzJLnH2mZhfK03991EX6WfPx7zU2EmbpPIQpY9hzywfDwg0O2oOmMrmyGgPonkjykA9XlGcYOa+0mL4IS4F7MMZbtcRTYNVOhcn0V8Cwd/imKUChkkhnz8MOUjjImahQFaykhqBh4La/cw5Kr+641tmBfM0Ths9lJglT+6gIhxcHR+hp/k/Xtgj6KPCWKBYgK5R0GFshM2VDGxI5qa3wvQnysjF3Z09FlDNPJRICC1WE0TfkT9XuIFfLV68TbvQzg3CNd3YlwNWgew5OhS9vj3Nin7brNaz5hXxzdlyeuVSnvp6Tl45mugw==
- Arc-seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=CVqrhLrs2mJ9JS8n2J4B40FDQqnjawEUHsGr717BCYQAhpzKNURmn3uOCJfaarpmXU81y6GGjUraNeJ8xdZ3GMi8o3rfDV/cGXT/f8ZaYyydETUt2sX9J+SfyAY9Vmh24p0BG5uVoKCm4IGf9BFppdlp2qWuyDpohT2wWsafEVbxQPOLbDB6P1Vy8QRNRFc6R7VSjjVVErXnGhav0DrK2uXNzffwkySxU2VHFDNk2V301Y1E5NlzIHJBGvD9ikxmswNdqe2S3JJt4yn60plLZeUSCoNBhST8IZw8gcPOaZl5VVaebNGgI0esDlPFyz8hwrGXjAWPBKfNPZmj/f5Ilw==
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=admin AT AnthropLOGIC.onmicrosoft.com; spf=Pass smtp.mailfrom=admin AT anthroplogic.onmicrosoft.com; spf=Pass smtp.helo=postmaster AT NAM02-SN1-obe.outbound.protection.outlook.com
- Ironport-data: A9a23:ym0c5att9DbC/G5sIsGXskDsXOfnVKxVMUV32f8akzHdYApBsoF/q tZmKWmHa/zeZWWme9EkbI2+8U4P7MXVm9BrHgBlqiE8FC0QgMeUXt7xwmXYb3rDdJWbJK5Ex 5xDMYeYdJhcolv0/ErF3m3J9CEkvU2wbuOgTrSCY0idfCc8IA85kxVvhuUltYBhhNm9Emult Mj7yyHlEAbNNwVcbyRFtMpvlDs15K6p4GlA5QRkDRx2lAa2e0c9XMp3yZ6ZdCOQrrl8RoaSW +vFxbelyWLVlz9F5gSNz94X2mVTKlLjFVDmZkh+A8BOsTAezsAG6ZvXAdJHAathZ5plqPgqo DlFncTYpQ7EpcQgksxFO/VTO3kW0aGrZNYriJVw2CCe5xSuTpfi/xlhJERoZ9Up0+R8Okp1s sIzARoXaB+hl/3jldpXSsE07igiBO/CGdtF/0pGlHTeB/tgRo3fSaLX49MexC03ms1FAffZY YwedCZraxPDJRZIPz/7CrpixKHx3ia5ImMe9gn9SakfuwA/yCR43L3sNvLcfMCKX8JNmkGXp 2mA+GL8AxoAM8eYxybD+XWp7gPKtX+lB9NMT+HonhJsqACd6DIiLD86bnKynfuwh2WXVvAGC UNBr0LCqoBprRfwFoCnN/Gim1aPtRkcVtx4Aew/4huEjKvS+QeQQGYeJhZKb8Vjv8srTxQxx 1qRlpXoAyZuufubUxqgGqy8qDqzPW0OKzYEbCpcFwwDuYG9+8c0kw7FSctlHOitlNrpFDrsw jeM6i8jm7EUis1N3KK+lbzav96yjp2XFFYEzwfcZUmeqT1STaS/YYOK+UeOuJ6sM72lZlWGu XEFne2X4+YPEYyBmUSxrAMlTODBCxGtYG20vLJ/I3Uy3278pyT5Iui89Bk7dRc1Y5xaEdP8S BWL0T698qO/K5dDgUVfWIu3Q+0s0a/mFNONuhv8MYoUMsgZmONqAEhTiaO42mnslA03l/g5M JLDK8GqVy5EUuJg0Sa8QPob3fkz3CciyGjPRJf9iRO6zb6ZY33TQrAAWLdvUgzbxPzZyOk22 48OXydv9/m5eLGhCsUw2dJNRW3m1VBhWfjLRzV/L4Zv2DZOFmA7EOP2yrg8YYFjlKk9vr6Wo SzhABYElQSh2SavxeC2hpZLOOKHsXFX/SNTAMDQFQzys5TeSdrxvPdGKsNsFVXZ3LU+nKIkH 5HphPls8twUE2+co21HBXUMhIljfw6sngWAI2KsciUlcvZdq//hq7fZkv/U3HBWVEKf7JNgy 5X5j1+zacddG2xKUZiHANrxlQ/ZlSZGwopaARCXSuS/jW23reCG3QSq0qRoSyzNQD2frganO /G+WEZJ/LmS/95tr7EkR8ms9u+ULge3JWICd0Gz0Fp8HXCyErOLmNcYCrS7bnrGWXnq+a6vQ +xQwruueLcEhVtG+c40Wbpi0at0tZOlqq543zZUOizBT22qLbd8fViA/81E7ZNWypFj5ACZZ 0Oo+/thA4uvBv/LKlAqCTQAUvWiztARwznb0uQ0Kh715Qhx57u2bn9RNBit1g1ecZFJDKo05 dkHn+stshKOjyc3OI241hFRpj2GK0UdWIUFqJ01Po3npQ41wFAff5DsMDT8usCVT9BqLEMRA yS1gZDajO923XvycHsUFFnM09FChJ8Ihgt48V8aK3mNmfvHnvUSzjQI1RgWFyN+0QRhweFoH 2pkJX1OOqSF+gl3iPh5X2yDHx9LADub8BfTz2QluXL4TU66cH7kN0w4ZPiw+X4G/1JmfjR0+ K+SzEDnW23IeODzxi4DZl53mcf8TNBe9hzwp+7/Jp6rR6IFWDvChrOiQUEqqBG9WMM4uxDhl NlQpe11bfX2CD4Ur6gFELKl7LU3Si7VAExZQPpkwrEFInGERhG2xgq1Ch6QfuFjGqX01HGWW u1UCOBBbRCc7Bq1jys6APcMKoBknfRy69slfKjqFFE8sLCej2RIs7zN+gf+lWVwafBSycofE 5KMaTiHS3Sh3llKkDWcqcVvZ2iyO4EFQCbe3+mF1voDOLxekeNrcGA0iqCVuVfMOiRZ3hukh iHxTI6I8P5Dk6FHgNLKPohYIge/dPffdbitqVioktJsadjvD5//hzkNoAO6AzUMbKojZdtns J+s7vvl11zhl5QrWTn7n5KhKfF41f+qVrAKDvOtfWhopgrcasrC+BBZxnuZL6ZOm9Zj5sWKY Qu0Rc+zVNwNUedm23xnRHlCIikZFpjIQP/slQGlo9SILyot4wjNAdek1H3uNG9gZnApPb/6A VTKoPqA3I1Tg7lNIx4mPMtYJaFEDmXtY5Z7SO2phwKkVjGppnigpordkQER7GCXK3ucT+f/z 5H3Zjn/UxWQkqvO9tZStt1tgjBGLE1ApPQ6JB8B8uFQmjrhKnA0K90AAM9XFrBVjS3A+5Xqb x7dbGYZKHvcXBYVVT7e8djcTgOkKehWAejAJxst5FKyaQ6tIr+5EJ9N13xH2GhnXRfFwMWMC 8AsylepMjefmphWFPsuvNqliuJZ99bm73Mv+2WmtuftAhwbUI445FY4ECVjDSX4QtzwzmPVL m0IREdBckGxaWj1Ne1CI3d1OhUojAnD/gUSTxWk4Yjg4t2A7eh61vfAFfn50eQDYOQ0Nbc+f y7LaFXX0V+G+E44mPUPi4slj5YhXLjPVoK/IbT4TAIfo7Co5y51d4kelC4IV4c59BQZD1rZk SK27mMjAFiebnpcw6CS1R5D7qcZvqjg1N0VpFKXSf76fR0FIxzxXTGPlFi+Erep7q/psgNfX SsYa1uXrxuOrjz4qDJit/Md4FuaHcUWEnqCWSctJn83ugn5U3dTTdiNzGljv++9MlUdrmmXS EpV+9w75IK9WTuL2A/ll5EeZL1mpK0GAQMNl/ni+xcD+h6Yytbga9jgQlqlZl96vPy1MGjtF uX6bUDfEwXOlS5+fxcjvMvUSpdm7a+/2a5+41I6ZSyfVnlwzbBH86OFDcKSlMi6mElPuUtvr Kkc3BpjLSsKHA==
- Ironport-hdrordr: A9a23:AhoOMavRUgbpnXKgVyE6ZClB7skDe9V00zEX/kB9WHVpm62j5q eTdZEgvyMc5wxhO03I9erhBEDiexLhHPxOkOss1N6ZNWGMhILCFvAG0WKN+UyFJ8Q8zIJgPG VbHpSWxOeeMbGyt6jH3DU=
- Ironport-phdr: A9a23:ws9NsRLGJkrOcbVKXdmcuDdoWUAX0o4c3iYr45Yqw4hDbr6kt8y7e hCFuLM00AeCBtqTwskHotSVmpioYXYH75eFvSJKW713fDhBt/8rmRc9CtWOE0zxIa2iRSU7G MNfSA0tpCnjYgBaF8nkelLdvGC54yIMFRXjLwp1Ifn+FpLPg8it2O2+5Z3ebx9ViDeyfb9+I xu7oAfMvcQKnIVuLbo8xRTOrnZUYepd2HlmJUiUnxby58ew+IBs/iFNsP8/9MBOTLv3cb0gQ bNXEDopPWY15Nb2tRbYVguA+mEcUmQNnRVWBQXO8Qz3UY3wsiv+sep9xTWaMMjrRr06RTiu8 6FmQwLuhSwaNTA27XvXh9RwgqxFvRyhuxJxzY3Ib4+aO/VzZb/dcsgGSWZdQspdSy5MD4WhZ IUPFeoBOuNYopHnqFQTqBu+BA+sD/7oxzBSm3D22Kw60+I6HAza2gwgA9IOsG7TrNXtMqkcS OG7wqrWwDnZaPNW3zL96InUfRA7pvGMRrVwccTNyUU1CwzFiVCQpJXjMjiI2esDr3KV4PB8V eKzlWEnsQdxryCvy8oohYTFmowYxk3Z+Shl3oo4K961RUx7bNCrDpdeuDyWO5V4T848TGxlu zg2x70btZOlfiUExogryhHcZvGadYWD/xztVOGUIThihXJlfqqyhhi18Ui6ye38TdW70FZNr ipCltnBuHEA2hzJ5sebTft9+1+t2TmO1wDP6uFEPFs7mbDHJJ4mx749kIcYv0fbHiLul0j6k LWaelg49uWq8ejqZrTrqoWdOoJ6kg3yLKUjltCxDOk9LwQCQ3OU9OW52bL54UH0TrBHgeY2n 6TctZ3XK9kXq6ikCAFPyIkj8QywDzK+3dQYg3YHKFVFdQqfgYX1PF/CPO70Ae6ijVq0jTtn3 vfGMab/DZnXKXjDjavhcq16605Bzgo80MpT54pOCrEGPPL8RFP+tMDZDh8+NQy42eHnCMhh1 oMaXmKPBayZPLnOvl+P4+IjO+iMZIkLtzbhM/Uo6OLigWUklVMBf6Slx58aZXGiEvlnLUiVe X/sjc0AEWcOsAo+VuvqiFiaXDFJenmyWqM85jcgBY28C4fDWoCtgKaG3CejGp1WYW9GClGQH nvycIWEXfIMaCOOLc97lTwETr+hS4E91R20qAD6zL9nIvLS+iIDrZ3jzsR65/XPlREu8jx5F 9qR33mXT25ohmMIWyM23KdnrENh1liD1qh4jOJeFdFI5vJJUwI6OoXGz+NgEdzyWwTBfs2IS Fm8WNmmDysxQsorw9ASe0Z9B8mijhfb0iW2BL8VjqWHC4Aw8qLBxHf8PN19ynbD1Kk5lVYqW MpPNWu8hq5+7QffHYDJk1/K35qtIO4XzTTM8CGIymqDumlZVhRxWOPLRzpXMkDHt9X9oEjFT 7KoIbUhKApIj8CYfO8CIMHoiBNYTfHvNc7aYmS9lmGYGB2Mwa6SZYvsPW8Qlm2JFEkB1R4a+ 3qLLww/ACuspUrDBzhpCEzmYkWq++Qo7DvxRUYowg6NdUxszJKw5hdTjvXWA6cY164JtyA7q jhvNFOh1pTdAozE70Bqe7wZatcg6n9G03jYvkpzJNboe6tlnxsVdxl9l0LozRR+TItax5sEt nQvmQN+LKOemAdIezaZ27jZPKHXMG7q2DeASoWQ3Vfb0d2M/bwI5uh+oFLm6lL6XnE++mlqh oEGm0CX4Y/HWVJ6ufPZV08280M/vLTGemwm4JuS03RwMK6yuzuE2tQzBeJjxAzzN8xHPvaiE wn/W9YfG9DoMPYjzlGlaxMCFMlU6K4uONuCUNSn8+isOuNhlyihlmNJ/MZ21UffvzFkRLvw1 o0ei+qdwhPBUj79iFm7tcWikIxBZDc6F2yjyTLjHIpWaax5O4ENDGalOcqswdtiwZXqXi0Q7 0atUmsPw9ThYh+Odxr90AlXgFwQumCikDCkwiZctRgM9vDa5wqXhuPoeVwAJ3JBQ3RkgRH0O 4+ogtsGXU+uKQ80iB+i4kW8zK9ezEhmB0/UR0oAPy3/LmU5F7C1qqLHeMlXrpUhrSRQVu24J 1GcUL/05RUAgWvlGCNFyTY3eivP2N2xlgFmiG+bMHd4rWbIMcB2yxDF4dXARPlXljMYTSh8g DPTCxCyJd6stdmTkp7CtKi5WQfDHtVafSzqy6upsje7/2pyJTqQvtv1ndviEAMg1jT82cUsX iLN7V79boTty6WmILd/ZEA7YT20o8F+G4x4js4xnMRMgT5D3srTrCRBzzygVLcTkbjzZ3cMW zMRltvc4Qy+nVZmMmrM3IXhEHOU3spmYdC+JGIQwCM0qc5QW8L2pPRJmzV4pl2goEffe/94y 30Uxf4v7lYThf0Jog01yiKSA7tUGk9dPCf2kA+P4cz4p6JSLjXKE/D4xA9lkNatAavX6AhQX Xf/Ur4kAS9q6d1bF33t+zv07ITlc8PXdtUdqluflBKK3I03YNoh0/ENgyRgI2f0u3YonvU6g RJZ1pa/pIGbKm9p8cpVGzZgPybuL4MW8zDp1uNFm9qOmpuoBtNnEykKW53hSbSpFigTvLLpL VTGHDo5o3adUb3ReG3XoE5qqnPJO5mtK3GNI2EdytpjT1+aIkleixoTRzI0gtgyEQXiyMH6c Uh/7ywc/Rak8l0Vkr0uZke5DDyXrRzNCH98UJWFKRtK8gxOr1zYN8CT9KM7Hi1V+IGgsB3YL 2WaYwpSCmRaEkeABl3lIvyv/Yycq67BXrX4fqWIP+7dzI4WH+2Fzp+uzIZ8qjOFN8HUe2JnE +V+wU1bG3ZwB8XenTwLDS0RjSPEKcCB93LesmV6qN6y9PPzVUfh/4yKXvFbPdBu/Ti/h7uDL emIgCF2KD0e0ZUJxHTSz6MY0kJUgCZrPWrIc/xIpWvWQaTcl7UCRRcXbiJ1HMJO86Im2RFJP sHagZXy0Lt5heQyEFBLSRrqncTjNqloaymtcVjAAkiMLrGPIzbGltr2ba2LQrpVlOxIthe0t GXTAwr5Mz+EjTWsSwG3PLQGknSAJBIH8tLYEF4lGS35QdnhcBH+LNJnkWh83+gvnn2TfW8Eb WogKwUc9PvIq3sf26g3GnQdvCY9a7DcxGDBqbGfc8hz07MjAzwoxb8Api1ik/0NqnkDHaA9m TOO/Ic2/xf6za/XjGIgCUUGqy4V1tiC5RwwYPyApJccAS6WrlVRvQDyQ1wLv4U3UNS34vIJk 4Gdmv6rc2UQtI6FtcoEWZqOIZreYiN4aEjnRGaPXltdFWb5ZyaC3yk/2LmT7iPH9JFi88q1w cNcROMDDw4+TqtCWBYiQYVKIY8pDGktyefJ1ZdRt3Ti9EKDSp0C5sKVEa/IZJenYDefhr1Za xZa2qv2IcILLIrn1kd+a1582oPXB07XWtMLqSpkJko9pEEHmJRnZlU6wFmtKgak4XtIUOWxg gZzkQxmJ+Ik6Dbr5V4zYFvMvio51kcry53phjWYcTi5K6nVP8keEy3vq004KY/2WS5TRCjqx wlfEm6BQLhcybx9aWpslQnQ/4NVHuJRRrFFZxlWwuyLY/Iv0hJXrSDCpwcP6ebeCJRknRcna tbw9zQZg10lPYBze/eYLbEB1lVKg6OSoiKknvs8xgMTPQdF8W+ffjIJpF1dNrQiIHnNnKQk4 giDlj1fPWkUAqZy5KsyqQVsZaLelHGFsfYLME26Ou2BIrnMvmHBkZXNWVYszgYTkFED+7Fq0 MAlek7SVkY1zbLXGQ5aUKiKYQxTccdW82DeOCiUtuCYi5t5OoS7PunuUe+Us74QhU2lF0AuG YEN5d4GBZ6izAfTKsKtf9tngV09oR/mIlmIFqEDYBWQjDIOuN2y1rdR9KwFfHQmJzw4Ni+6o LHKugUtnfyPGs8sZWsXVZcFMXRwX9CmnylevDJLCzz9gYd7gECSqjT7oCrXFjz1adFuMeyVa R1bA9az4Twj8qKyhA2f4tDEKmr9L9gnps7X5LZQucOcE/0NB+oY0Q+Ui8xCSnetSWKKDdOlO 826ddw3ddKtQneiDg7j03RkFYGpeo7qd/XAgBm0F9oM9tDDg3Z7c5f6T297eV84pvlftv8mI 1RbO9xjJ0av7lh2NrTjcl7AjpPyHCD1b2MRFqYXzP3kNeZel3N+N7bjmnV8Fslona7roStvD NkLlk+Mn//7PtsHCHGhFCAFIFed4nZo32l5aLRoy79mkkqR6AsSb2jQJrwxMDQW7ZZhXTbwa T13EjRqHVbE1Niau1f+0exKpHlWx44Mg78C7SG2v4eBMmilAPX58MyM4SR8NYN0rfUpad6xZ Zbc0fGW1j3ZR53NvgDXSza0G7xCgN9MLSlEQf5O32Y4JcgBvokH4k00HoI3I7gFYEHNjpaDT GI+SBU0lGoeXY7G2yEeiOCh3becjg2XbJkpLB0DttNFn8cZVCl1JCgZof36P20zv0aCVmgRJ x83yittz0QHkIpxdfri+43GUNlHzDsE+5qcvQPCEIVo7VzjTmaZgFO+T/Okkuez2hlVwu6q2 d4eCkcXNA==
- Ironport-sdr: 63dcfffc_P3aX4LGc7ZMKVCFB0gascr5GJ7sNPzjRwaSdfvpJw9Jfcr7 L7+J9Xsz7eOGILcawrn3mDuz0Vr7dLU5WBOauVg==
- Msip_labels:
Salut Ciryl, indeed it is about time to start industrial labor into Dosen's
ideas and techniques. In one line: the problem of contextual composition (cut
elimination) and monoidal units (J-rule elimination) is solved by alternative
formulations of adjunctions.
CfP: Workshop on implementing Dosen's categorial programming, collocated
“around” CT2023 in July 2023
Registration: WorkSchool 365 is a new marketing format for authors/brands to
disqualify reviewers/customers, with extra specialties for Coq via a Word
document add-in; sign-in at https://WorkSchool365.com
Context: There is now sufficient evidence (ref [6], [7]) that Kosta Dosen's
ideas and techniques (ref [1], [2], [3], [4], [5]) could be implemented for
proof-assistants, sheaves and applications; in particular cut-elimination,
rewriting and confluence for various enriched, internal, indexed or double
categories with adjunctions, monads, negation, quantifiers or additive
biproducts; quantitative/quantum linear algebra semantics;
presheaf/profunctor semantics; inductive-sheafification and sheaf semantics;
sheaf cohomology and duality...
[1] Dosen-Petric: Cut Elimination in Categories 1999; [2] Proof-Theoretical
Coherence 2004; [3] Proof-Net Categories 2005; [4] Coherence in Linear
Predicate Logic 2007; [5] Coherence for closed categories with biproducts 2022
Proposal for prospective implementation:
The problem of “formulations of adjunction”, the problem of “unit objects”
and also the problem of “contextual composition/cut” can be understood as the
same problem. The question arises when one attempts to write precisely the
counit/eval transformation ϵ_X ∶ catA(F G X, X) where F : catB → catA is the
left-adjoint. One could instead write ϵ_X ∶ catA(F ,1)(G X, X) where the
profunctor object/datatype catA(F ,1) is used in lieu of the unit
hom-profunctor catA; in other words: F is now some implicit context, and the
contextual composition/cut (in contravariant action) of some g:catB(Y, G X)
in the unit profunctor against ϵ_X should produce an element of the same
datatype: ϵ_X∘g : catA(F,1)(Y,X)... Ultimately Dosen-Petric (ref [5]) would
be extended in this setting where some dagger compact closed double category,
of left-adjoint profunctors across Cauchy-complete categories, is both inner
and outer dagger compact closed where the dagger operation on profunctors (as
1-cells) coincides with the negation operation on profunctors (as 0-cells),
optionally with sheaf semantics and cohomology. The earlier Coq prototypes
(ref [6] for example) show that the core difficulty is in the industrial
labor and tooling, which requires a coordinated workshop of workers (not
celebrities, lol).
Recall that closed monoidal categories (with conjunction bifunctor ∧ with
right adjoint implication functor →) are similar as programming with linear
logic and types. Now to be able to express duality,
finitely-dimensional/traced/compact closed categories are often used to
require the function space (implication →) to be expressible in basis form.
But along this attempt to express duality, two (equivalent) pathways of the
world of substructural proof theory open up: one route is via Barr’s
star-autonomous categories and another route is via Seely’s linearly
distributive categories with negation.
For star-autonomous categories, one adds a “dualizing unit” object ⊥ which
forces the evaluation arrow A ⊢ (A → ⊥) → ⊥ into an isomorphism. For linearly
distributive categories with negation, one adds a “monoidal unit” object ⊥
for another disjunction bifunctor ∨ whose negation A'∨- is right-adjoint to
the conjunction A∧- where this adjunction is expressed via the help of some
new associativity rule A∧(B∨C) ⊢ (A∧B)∨C called “dissociativity” or “linear
distributivity” (used to commute the context A∧ - and the negated context
-∨C); and it is this route chosen by Dosen-Petric to prove most of their
Gentzen-formulations and cut-elimination lemmas (ref §4.2 of [3] for linear,
ref §11.5 of [2] for cartesian, and ref §7.7 of [2] for an introductory
example). In summary, those are two routes into some problem of “unit
objects” in non-cartesian linear logic.
Some oversight about the problem of “unit objects” is the belief that it
should have any definitive once-for-all solution. Instead, this appears to be
a collection of substructural problems for each domain-specific language.
Really, even the initial key insight of Dosen-Petric, about the
cut-elimination formulation in the domain-specific language of categorial
adjunctions, can be understood as a problem of “unit profunctor” in the
double category of profunctors and the (inner) cut elimination lemma becomes
synonymous with elimination of the “J-rule”; and recall that such
equality/path-induction J-rule would remain stuck in (non-domain-specific)
directed (homotopy) type theory.
Now the many “formulation of adjunctions” are for different purposes. Indeed
the outer framework (closed monoidal category) hosting such inner
domain-specific language (unit-counit formulation) could itself be in another
new formulation of adjunctions (bijection of hom-sets) where the implication
bifunctor → is accumulated during computation via dinaturality (in contrast
to the traditional Kelly-MacLane formulation).
Finally the problem of “contextual composition/cut” also arises from the
problem of the structural coherence of associativity or dissociativity or
commutativity, which now enables gluing the codomain/domain of compositions
such as A∧f ∶ A∧X → A∧(B∨C) then g∨C ∶ (A∧B)∨C → Y∨C, or such as η_A ∶ I →
A'∧A then ϵ_A∘f∧A' ∶ A∧A' → I, and which would force the outer framework to
explicitly handle compositions under contexts/polycategories modulo
associativity (“Gentzen cuts”) or to handle trace functions on arrows loops
modulo cyclicity (for compact closed categories)... In other words, the meta
framework (such as Blanqui’s LambdaPi and surprisingly not Coq’s CoqMT at
present) of the framework should ideally implement those strictification
lemmas (ref §3.1 of [2]) to be able to compute modulo structural coherence.
[6] Cut-elimination in the double category of profunctors with
J-rule-eliminated adjunctions:
https://github.com/1337777/cartier/blob/master/cartierSolution12.v (
/cartierSolution12.lp ; /maclaneSolution2.v MacLane’s pentagon is some
recursive square! )
[7] Pierre Cartier
- Re: [Coq-Club] Job offer — [CfP] CT2023 workshop on implementing Dosen's categorial programming, admin, 02/03/2023
Archive powered by MHonArc 2.6.19+.