Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Turning Non-Primitive Recursive Function into Primitive Recursive Function

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Turning Non-Primitive Recursive Function into Primitive Recursive Function


Chronological Thread 
  • From: Mario Carneiro <di.gama AT gmail.com>
  • To: Stefan Monnier <monnier AT iro.umontreal.ca>
  • Cc: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] Turning Non-Primitive Recursive Function into Primitive Recursive Function
  • Date: Fri, 19 May 2023 13:52:12 -0400
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=di.gama AT gmail.com; spf=Pass smtp.mailfrom=di.gama AT gmail.com; spf=None smtp.helo=postmaster AT mail-ej1-f47.google.com
  • Ironport-data: A9a23:1miD2qrpFheFGaE+QV+7keI+hmFeBmLYYRIvgKrLsJaIsI4StFCzt garIBnXb6nfMWumf9F1O9++pB4E6sWEmtFiTFM6rH9gFC4b8+PIVI+TRqvSF3PLf5ebFCqLz O1HN4KedJhsJpP4jk3wWlQ0hSAkjclkfpKlVKiefHoZqTZMEE8JkQhkl/MynrlmiN24BxLlk d7pqqUzAnf8s9JPGjxSs/rrRC9H5qyo42tF5w1mP5ingXeH/5UrJMJHTU2OByCgKmVkNrbSb /rOyri/4lTY838FYj9yuuuTnuUiG9Y+DCDW4pZkc/DKbitq+kTe5p0G2M80Mi+7vdkmc+dZk 72hvbToIesg0zaldO41C3G0GAkmVUFKFSOuzdFSfqV/wmWfG0YAzcmCA2k0Z58l97Z+Ql1rr 84IdABONUnfmcaflefTpulE3qzPLeHuNYIb/3xilHTXUalgTpfETKHHo9Rf2V/chOgURaeYN 5dfM2M/KkifC/FMEg9/5JYWkObuiXD6ehVXrVuUoew85G27IAlZjeaxYISPJILiqcN9kFvbh W7803zAGxQEC+ed5WCj0H+Xibqa9c/8cNtKSOfQGuRRqFaU3ykYDAAcfUCqpOGwzE+4QdNWb UIOkhfCtoA3/U2vC9T/Bli2/CHCsRkbVN5dVeY97Wlh15Y4/S6bXHo5Q25IK+AD7v0mGQxpj QbVgffAUGkHXKKudVqR8bKdrDWXMCcTLHMfaSJscefjy4mzyG3UpkKfJuuPAJJZnfWuRm6tm 2HiQDwWwuRM3ZRShs1X6Hie22r0zqUlWDLZ8ek+Y45IxgZwZYrgao7xrFaHsrBPK4GWSlTHt 38B8yR/0AzsJcDX/MBuaL9VdF1M2xpjGGOB6bKIN8d/nwlBA1b5IehtDMhWfS+FyPosdz7ze 1P0sghM/pJVN3bCRfYpM97tUJh0kfC4TIyNuhXogjxmMsgZmOivrHEGWKJs9z2FfLUEy/BkZ c/ALa5A815GUP86pNZJewvt+eZzmnpWKZL7Spf8wBCquYdyl1bEIYrpxGCmN7hjhIvd+Fu92 48Ga6OilU8DOMWgOXK/2dBIfTg3wY0TX8+eRzp/Lb7dfGKL2QgJV5fs/F/WU9A8x/wMy7mWp BlQmCZwkTLCuJEOEi3SAlgLVV8ldc8XQasTbHd0b2W7kWMue5iu56o5fp46N+tvvu96wPI+C 7FPd8ycC74dAn7K6hYMX6nb9YZCTRWMgR7RHiyHZDNkQYVsaTaU8fDZfyzu1hI0MAyJieUEr YaN7DjrGag4e1w6DeL9Su6e8FeqjH1MxMNwRxTpJ/dQSmXN8a9rCSr7sdEvKepRKx+Znjq+/ CSVCCc+uuPijdIU8t7IpKbctKavMbJ0MXR7Flnhz4SdFHfl7Ev65qRfQsOkQCv7aFrk3ImDO cBE0ODaMtAcuVRB7rpHDLdgyJwh6+vVp7N1yhpuGFPJZQ+JDoxMD2an385dkL9k3Z5c5BWLX 3yQ9ulgObmmPN3vFHgTLlEHasWBzfQlpSnA388qIUnV5D5Fw5TfaB98ZyKzsS16KKd5FKgHw u174c4f1FGZuyoQa92DinhZynSIInk+SJ4Yj5A9ArG6riowy1pHX47QNT+u3rGLdOd3ExcLJ h26ufP8oopyl2T+d0g9L3zv5dZmpI8vvUlKxWASJl7SldvigOQ27SJr8j82b1p0yxlb4t13I UxuEVN/HoSV3jJSnMMYdXudKwJAIxy4+0LK1FoCklPCfXSoTmDgKG4cO/6H2UIkr0ZwWyd9x 67B7krIShPoc9PV8gpofHV6utrxSdBV3S/TqvCNRsiqMcEzXmv4v/WIe2ENlSrCPeowo0/i/ sxB4+d6bPzABx46+qEUJdGT6uUNdUqiOmdHfPBG+ZEJF0H6fBWZ+2CHC2K1S/N3C836y22KI O0wGZsXTDW77jiEkR4DD61VI7NUou8g1OBfRpzVf1w5o5mthRs3lqKI7SXvpn4Zc/M3m+YHF 47hXTajEGuRuHhqp1HwvPR0YmqWXfRUZSnX/vyEz+ESJpdS7MBuaR4T15W3jVW0MSxm3Q6lg wfYQ5Do1slZkIFKs4DxIP8SGTfuOdfXUcKW+juSqPVLV8vEau3VhjMWq37mHgVYBqQQUNJJj oawsMb78UfGnbQuWUXLssOlO4gQwuvqR8tREMb8DEcCrBu4QMW2vicyoTGpG6JGgPZ2x5eBR TLhTOCSaNRMedNW5EMNWhhkCxxHVpjGNPbxlxic8caJJAMWizHcDdWd8nTsU2FXWwkIN7D6C S72o/ye3c9ZnqsdGC47A+xaPLEgLG/BQacGc/jDhQucBESsgXKAveLsq0Nxo3WDQHyJC93z7 p/5VwDzPkb68r3ByNZC9Zd+pFsLBXJ6mvM9ZV8Z58UwsT2hEWoaNq4IBP3q0H2PfvDaj/kUp Q0hbVfOzQ34VDVANBj+uZHtAljZCesJNdP0YDcu+it4rstw6JyoWNNcGuVIuh+auQcPCMmoL Ngf/jv7OR3ZLlRBW7MI/vLi6Qt47qqy+5/LkHwRV+T9Bh8fBfMB03kJ8M+hk8DYO5mlqXgn7 lTZiYyJrI9XhKIx/Qtdl6ZpJSwk
  • Ironport-hdrordr: A9a23:ljSLhaOvl1gUD8BcTv6jsMiBIKoaSvp037Dk7TEJdfU1SL3hqy nKpp4mPHDP+VMssR0b6LK90ey7MBDhHP1OgLX5X43SODUO0VHAROpfBMnZowEIcBeOkdK1u5 0QFZSWy+edMbG5t6vHCcWDfOrICePozJyV
  • Ironport-phdr: A9a23:s992/BP/DE5IMQbXYaEl6nYwBxdPi9zP1u491JMrhvp0f7i5+Ny6Z QqDv6gr1wGUFtyCtrptsKn/jePJYSQ4+5GPsXQPItRndiQuroEopTEmG9OPEkbhLfTnPGQQF cVGU0J5rTngaRAGUMnxaEfPrXKs8DUcBgvwNRZvJuTyB4Xek9m72/q99pHNYwhEnjSwbLJyI Rm5sAndq8kbipZ+J6gszRfEvnRHd+NKyG1yOFmdhQz85sC+/J5i9yRfpfcs/NNeXKv5Yqo1U 6VWACwpPG4p6sLrswLDTRaU6XsHTmoWiBtIDBPb4xz8Q5z8rzH1tut52CmdIM32UbU5Uims4 qt3VBPljjoMOiUn+2/LlMN/kKNboAqgpxNhxY7UfJqVP+d6cq/EYN8WWXZNUsNXWidcAI2zc pEPAvIOMuZWrYbzp1UAoxijCweyGu7g1iRFiWXq0aAgyektDR3K0Q4mEtkTsHrUttL1NKIKX O6y1qbI1zTDb/RL0jrj8ofIaBYhru+NXbJqdsra1E4iGB7EjlmKpozqJTaV2f4WvmiU6upvT +Ovi2o9pw5tpTivw94hh4/UjY0a1l7K7z92wJopJdKmUk57Z8apHYdeuiyZOIV7Td0vTmFot iok1LAItp61cDYKxpg6wxPSb/2KfouG7x/9SuqcIzh1iW9rdr6jiRi8/kytxvD4W8SyzV1Er TJFn8HSunwR0xHf8MuKR/tn8ku/xDqC1Brf5+5GLE0yiKHVMYQuwqQqmZoWqUnDHjH5mEHxj KKOc0Ur4Omo6+D+brr4pJ+QKpZ4ig/xP6ksgMC/DuM4Mg8BX2if5+uwzqHs/Ur8QLlSj/02l LfWsIzCKMgFuqK0BxVZ34Uj5hqlETuqzdcVkWMIIV9HYB6HipLmO1DKIPD2F/e/hFGsnS92y PDHJLHhDY/CLn3Zn7r6crZ97lRTyAs3zdxF+51UDbQBLOr1WkDqrNPYFAM2MxSow+b7D9Vwz p4SVXqVAqCFKKPSrUOI5uU3LuaQY48VoS/xJOQh5/7zlnA0gkQdfKms3ZsPcn+0BPVmI0ODY XrtmNgNC2kKvhBtBNDt3WaeXDBaYT6XWKQ65zwhQNajCoHFR423qL2b22GmG5pQenpLA1TKG n6+JKueXPJZTSuII8gpuTUeU7WgUYhpgR2v8gDzzrNPIe/d+ylevpXmgosmr9bPnA0/oGQnR /+W1HuAGiQtxjtgr14e2al+pRc40VKfye1jhOQeE9VP5vRPWwN8NJjGzuU8BcqhEhnZcIKvT 1CrCs6jHSl3Vsg4ltMPJUl0HtyKgRXK3i7sCLgQxPSQHJJhyqvHxDDqItpljXPP1a0vlV4jF 8dOc2Kvg6dX+A3aBoqPmEKcxO6xbapJ+inL+S+YyHaW+kFVVAklSaLeQXUWfVfbt/z870LGC rKsUPEpblQHxsmFJa9HLNbuiD2qXd/FP9LTKyK0kma0XlOTw6+UKZHtYyMb1TncD04Nl0YS+ 2yHPE4wHHXppWWWFzFoGV/1BiGkueBjtHO2SFM1xACWfgVg0bSy4Bscmf2bTbsawLsFvC4rr zg8Eky62praDN+Jpgwpe6s5A5t17FYB2mvcviRyO5WhK+ZpgVtfOwV7skXy1glmX51amJtip 3crwQxubKOAhQkZJnXIgNaqY+2RdjahmXLnI7Tb0VzfztuMr6IG6fBj7k7moBnsDU06tXNuz 9hS1XKYoJTMFgsbF5zrASNVv1B3oa/XZi4l6sbaz3ppZOO4s3nN0tcgLOQgwxekOdxYNenXc W26W91fHMWoJOEwzhKlb1QLNeVb3KExNsKiMfCB3eT4dPYllzWgg2Nd5Yl72U/Z7CtwRNnD2 JMdyu2Z1A+KP9vlpG+oqdu/2YVNZDVJW3G61TChH4lJIKt7YYcMD26qZcyx3NR3wZD3CTZU8 1uqBlVO38HMG1LaY1270gRV3GwYpHWmnW2zyDk8nzwyr6WZ1TDD2Ky4LEtBajMNHjAyywuza YGvx8gXRk2pcxQkmH7HrQ7hyq5Xqb4+Z2jfTEFUfjTnemRrU6++rL2HMIZE7JIltzkSUfzpO wjLDO6g5UFDg2W/QDg7pnhzbTyht5TnkgYvjWucKC02t3/FYYRrwg+Z4tXARPlX1z5ARS9ii DCRCELvWrvhtdiSiZrHtfizEmy7UZgGOyXqi4yJsSKT6mhjABn5lPe20I6Cc0BywWrg2t9mW D+d5hr9JIbi0q2SPuduf00uD1j5oZkyCsR1lY0+g4sV0H4Ri8CO/HYJpmz0NM1SxaP0aHdeI FxDi86Q+gXu31dva26Y34+sHGvI2dNvPpPpKnNTwC826NpGTbuZ/KAR1zUguUK29GezKbB8h mtPkqZosS9CxbtV50x1iX/BSrEKQRsGYWq2zE/Oto7m6v0QPTfncKDshhQg24n5Vvfa5FkbA i6cGN9qHDcsvJshdgiQgTujsse8P4OIJdML6k/LyVGZ064Mech3zr1T1WJmIT6v4iFjkrRmy 0Qohdbj4u3lYy1s5P7rW0YIcGSqOIVDvGmq1/8Wn97KjdnwRdM4S2lNBN2wCqv2WDMK6aa9b 1fIQGB68y3LX+KYRFD6ig8urmqTQcryaTfKdD9AnI8kHF7EdQRemFxGBmxk2MRiR0bxnoq5N x4oriYY4lqywvdV4sRvMRS3EmLWpQPzLywxVIDaNx1OqAdL+0bSN8WaqON1BSBRuJO7/kSLL SSAagJEAHtsOATMDk3/PrSo+djL8vSJTuu4IfzUZLySqOtYH/6WzJOr24Fi8n6CLMKKdnVlC vQ63AJEUxUbU4zBnC4TTiUMiy/XR8uSpRP59y8u687jr7LkXwXg4YbJALxXcJ1u9x2wnaafJ ruQiSJ+elM6ntsHwX7FzqRa3UZH0Xk/MWnwV+5Z5WiRE/G1+OcfFRMQZiJtOdEd6qs92lIII svHkpbu0aY+iPcpClBDXFinm8ezZMVMLXvuUTGPTEuNKrmCIiXGhs/tZqbpA7FRyupdshSYt jOSEkulNTOG3WqMNVjnIaRXgSeXMQYL8pm6aQpoAHP/QcjObxS6NJp6j2Rzz+FrwHzNMmEYP H53dEYH/djypWtIx/54HWJG9H9sK+KJzj2Y4+fvIZETqfJ3Ay5wmoqyD1w1zrJU6GdPQ/knw UM6T/ZrqlCi1+SNk39pDEUIpTFMi4aG+05lPPeBnnGlcXnB9RMJq26XDkZSz+Y=
  • Ironport-sdr: 6467b759_IwbkHszIxOuvEFljGkiSon/YKpQ4m/1mtkhFRVRiGkGPCjS yTClC5mlKRRnI6NcHPsVJRg5ySdfiGdWihThrQA==

Well, I think you need to distinguish between the computation of the bounding function fuel : N -> N and the constructiveness of the proof that forall x, f' (fuel x) x = S (f x) (borrowing the variables from Yannick's statement). If the termination proof relies on classical axioms, then of course there is no free lunch when transforming to this setting, those axioms have to be used somewhere. But it can well be the case that the upper bound on the computation "fuel" is reasonable but the proof that it terminates within that bound is hard or relies on additional axioms. (I would give an example at this point, but I can't think of any good examples of functions which require classical logic for their termination proof.)

Because classical axioms don't raise the consistency strength of the system, I would not expect it to be able to prove the existence of even faster growing functions, hence I would doubt you need classical axioms to construct the bounding function.

On Fri, May 19, 2023 at 1:34 PM Stefan Monnier <monnier AT iro.umontreal.ca> wrote:
> This doesn't sound quite correct. While Kleene's T tells you that for any
> terminating computation there is *some* bound for the fuel you need to
> compute the value, the bound itself might be quite large, and so you are

Side question: is it the case that such a (conservative) bound is always
computable, even for those functions whose termination proof relies on
classical axioms?


        Stefan




Archive powered by MHonArc 2.6.19+.

Top of Page