coq-club AT inria.fr
Subject: The Coq mailing list
List archive
Re: [Coq-Club] [Agda] position in Deducteam — Lawvere/Dosen session on categorial logic/programming @ CT2023
Chronological Thread
- From: admin <admin AT AnthropLOGIC.onmicrosoft.com>
- To: "agda AT lists.chalmers.se" <agda AT lists.chalmers.se>, "frederic.blanqui AT inria.fr" <frederic.blanqui AT inria.fr>, "categories AT mta.ca" <categories AT mta.ca>, "coq-club AT inria.fr" <coq-club AT inria.fr>
- Subject: Re: [Coq-Club] [Agda] position in Deducteam — Lawvere/Dosen session on categorial logic/programming @ CT2023
- Date: Sun, 2 Jul 2023 20:37:57 +0000
- Accept-language: en-US
- Arc-authentication-results: i=1; mx.microsoft.com 1; spf=pass smtp.mailfrom=anthroplogic.onmicrosoft.com; dmarc=pass action=none header.from=anthroplogic.onmicrosoft.com; dkim=pass header.d=anthroplogic.onmicrosoft.com; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-AntiSpam-MessageData-ChunkCount:X-MS-Exchange-AntiSpam-MessageData-0:X-MS-Exchange-AntiSpam-MessageData-1; bh=x/spDSpdqdyF0Hn3OVDIlYaH7Iuxax/bXgLLDyMCWUw=; b=eFUjJG5kyuxprxLDGccFTWrOc0SGnzfhtDVVXo5gqg6lH22ZW6o9Ru7rcGykoIAT+0OQJ5RXoh7+7w68q+p0VkkO9vLqU5DgZKFrWDY/q50Av5Dek0iB1N34BIkGbYtku64JQ+fBcw/Lz4S+yHo2HGz90oTc0/e0xAHWAZzZw9J085zsi/EFZUo6SzB2V/pphN7lOc6kNxcZKdyXQPR1txUgrTgAvWpuueeyLBcuQzPOPXv7PCg8uoJaCGssV/aa2JomXSZBtw+Tacfj5gFciGeEnHFxBYJskg7jnuj9cMlI07KGNrvjx22TRwsMmx5LjGfELP9ubLzSl8guXuYdhw==
- Arc-seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=BM8efReQNqto3U8i1ihxHcJE6yZ+gvrLc3Byj6SmKqX6TUlO/0Pb5CnLJ1/RBvvx1AaTkH0f/nZ3+9gzJG4t0R6xd2QYKtM6iSDj9Z0PstN6XI+AoVD3yxtZiu/Jp/EQBQwCNhGNitPCYrbbT3An0oSnQpdlGPb+8hrs6hqiw6z+Qxt7TjxfQKT/hXEZv7qnAyoup+Rj8qcyeU/9tmLewdIEzld9RmTFExM0k140V/TTYTOlK8KF5aRDXPs8MR3EFPcIeEYUtTkQpDRr0JnmZoRCUUDvL+7JPfhyovhUXpTQevOx6QdwKI4ZIY4hM8rgexRJQD/zCz/gRn4YUT50VA==
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=admin AT AnthropLOGIC.onmicrosoft.com; spf=Pass smtp.mailfrom=admin AT anthroplogic.onmicrosoft.com; spf=Pass smtp.helo=postmaster AT NAM10-BN7-obe.outbound.protection.outlook.com
- Ironport-data: A9a23:EXQ0lKgX7EaOaEwjvHNuMdl8X161lhsKZh0ujC45NGQN5FlHY01je htvD2/Sa/7fZ2v8c9F+b9uw8h4CvpTdzdVjQQVlqH02EyljpJueD7x1DG+gZnLIdpWroGFPt phFNIGYdKjYaleG+39B55C49SEUOZmgH+a6UqieUsxIbVcMYD87jh5+kPIOjIdtgNyoayuAo tqaT/f3YTdJ4BYqdDpNg06/gEk35q+q52tC5gVWic1j5TcyqVFFVPrzGonqdxMUcqEMdsamS uDKyq2O/2+x13/B3fv4+lpTWhRiro/6ZWBiuFIOM0SRqkQqShgJ70oOHKF0hXG7JNm+t4sZJ N1l7fRcQOqyV0HGsLx1vxJwS0mSMUDakVNuzLfWXcG7liX7n3XQL/pGBW8IZaI+4+pNDnxi8 8AJIxMRVUCcvrfjqF67YrEEasULCuDOZdtakFc/iDbTALAhXIzJRLjM6ZlAxjAsi8tSHPHYI c0EdT5oaxeGaBpKUrsVIM5m2r7w2T+uKXsE8Dp5poJvi4TX5AV91bnrGNPTZtyQQt1RmUmZr STB+WH4CQsdL9uR1XyO9XfEaurnxHqmBtlIT+TmnhJsqHGR12wwDz4cbHeq+sads1Cmfe5vd 0NBr0LCqoBprRfwFoCnN/Gim1aOuhcaQsdRO/877QuXw+zV5RyYDy4KVFZpY9s/8cQyWDYCz U6Mh9qvBDp1sbTTR2j1y1uPhTa7OCxQJ2ldYyYBFFMC5YO7/Nl1iQ/TRNF+FqLzlsfyBTz73 zGNqm45mqkXiskIka68+Dgrng5AuLDAYDBtySPOUliq8y9/WJ+uRJCTuUfiuKMowJmicnGNu 30Nms675e8IDI2QmCHlfAnrNOH5jxpiGG2N6WODD6XN5Bz2pSD+Jtw4DCVWYRg5aZlZIVcFd WeJ4WtsCIlv0GxGhEOdS6i2Gsg2yq6I+T/NDKuFN4UmjnSci2a6EMxGYEeR2yXnlhcqmKRmY ZCdK57wVTAdFLhtyyewS6EFy7g3yysixGTVA5fm0xCg1rnYb3mQIVvkDLdsRrBghE9niF+Mm zq6Cyds40gHOAEZSnSNmbP/1XhQcRAG6Wne8qS7jNKrLAt8A30GAPTM274ncIENt/0LxreTp CvjAB4HlQKXaZj7xeOiOiELhFTHDM4XkJ7HFXZ9VbpV8yR8Odj3sPtAH3fJVeB7pLw9k5aYs MXpi+3bW68UEm2dk9jsRZz8p5ZlbxOlmUqHLTe/bVACk21IFmT0FivfVlK3rkEmV3Lp3eNn+ uHI/l2BHfIrGV84ZO6IM63H8r9ElSNA8A6EdxCUeYY7lYSF2NQCFhEdeddseJ1Rd0yelmHAv +tUaD9BzdTwT0YO2IGhrci5Q02BSoOSx2IDRzGBv4WlfzLX5HSiyoJmWeOFN2KVHmDt9anoI a0fw/jgObdV1BxHoqhtIYZNlKge3trIo6MF7wJGGH6QUU+nJIk9KVa73O5OlJZ3+JlnhSWMV HmiwOJqYYeyBJu9EXo6BhYUUeCY5PRFxhjQ9asUJWv51g9W/Z2Gc29YOSOLgykMM4dYYaMe/ MI8spRL9wWArAsgafCYvCZt6lXWf2AhUromhL4eEoTEmgom8XAcQJ3+WwvdwoCDVMVICWYue gSrvavlg69N4EjraFwPLGjp8csGoq8RqTdm6lMmDHaYqOrv3/MY8kVYzmUqc15z0B5C7dNWB kFqEE9QfoCl4DZigZl4bVCGQg1uKkWQxR3s9gEvimbcckiPU17NJk0bPcKm3hgQ00BYTwhh0 ICo8kTXehe0Q5ipxQo3Y1BvlNL7R98o9gHiptGuL/7YI7YEOwjako2cTktWjSu/Gs4gplz1l c8z9sZKVKDLHyoxoao6Noqk6YotWC20fGxsfdwx/YciP33tRzWp6D3fd2GzYpxsItLJw2+ZC utvBOV2akyu8Q3XhQwZDrIGeZ1wuPt4vdYtWK3nGjMFl721vzAyipbhrRLmjjV3Xt81r543B dLPfiPfEGbK3XpwsE3OpfliJWCXT4QlZgr9/ebt68QPNcsJn99NeHEI8ImfniuqIi542SmLr SX/aLTzzec/7ahNw661Sr5iASewIvPNDNW4yhi56YlyXImeIPXwuBMwgXi5GhZdIp86ecl9z JaJu/7JhHL1hq48CT3lqsPQBptyxJuAWcRMOZjKN1hcpyyJXfHs7zYl+2yVLZ9okstX1vK4R jmXOdeBStoIZ+hznHFlSTBSMxI4OZTFaq3NoSCcrfPVBCMNji3BDtesrkHyYU9hKyQnBpzZC y3PgciI2Ox2lop2OUI7N6lUOKMgeF7Hcok6RuL1rgidXzWJgEvdm77MligAyDDsC1uEGsDA5 pnAFwf0W0W0sZ7t0dsD7pB7gTsGBi1bn9s2R18soY9qqjGlDVwpKfYWHoUGB6p1zA3z9sDcT xPcYFQyDR7SWWx/Tiz9x9D4TyGdL/coBu7pAhAIpGSvdDaRKKWMJJBD5xVQyS56VRW7xd72N OxE3GP7OyaA561ARMERw6eeqvhmzPaL/UA40xnxvOKqCilPHIhQ8mJqGTdMcin1E8vtskHvD kptTEBmRHCLc2LAIfxCSVV0Ri5A5CjOyg82Zxih2Nzc4oWX7NNRwc3FZt3c7OcxU9QoFpUvG 1XHHmeD2jXDkDhb864koMkgjqJIGOqGVJryZrPqQQoJ2bq88CI7NscFhjACV9wm5BUZKV7Gi z2w+DIrMSxp8qyKNGG+lW3lOq6dU07gyxnvpSum/Xrst0N8yNLUPR+30Aj8NJf87bD5uFlVS ysTa0DXpECKsDzjpn91sfFzSpmvH5QKDXedOsw3Zsqar/tuYDY1+HNdP4US3tRN8GdD3oFTe 6ealdI7/YOsRCSU2A742tweZ9CLap8fTx8bheaBEA1DT7ONOUCSTzp9Ap+8UgYIhglSfnsg+ YvUbVneAhjRqg5fQnpuvMi5p1mQLFin/+pQ1WjTxvy2dlNRPlbzVnJ4DcSTlNxqaJi8
- Ironport-hdrordr: A9a23:hG6nf6wuc2Rz8BLhkmRJKrPxuOskLtp133Aq2lEZdPULSKGlfp GV9sjziyWetN9IYgBHpTnyAtj4fZq6z+893WBxB8bVYOCCggeVxe5ZnO/fKlHbehEWldQtnZ uIEZIOb+EYZGIS5amV3ODSKadC/DDzytHMuQ6o9QYOcegFUcFdxjY8LjzePlx9RQFAC5Z8Po Gb/NB7qz2pfmlSRtinB1EeNtKz7eHjpdbDW1orFhQn4A6BgXeD87jhCSWV2R8YTndm3aoiy2 7YiAb0j5/T/s1TiyWsm1M73a4m1ucJ+eEzRfBkTfJlagkEvzzYK7iJnYfy/wzd7tvfqmrC2+ O82yvId/4DkE85OFvF6icFkjOQrQrH5xLZuCWlqGqmrsrjSD0gDc1dwYpfbxvC8kIl+Mpxya RRwguixu9q5D777VfADuLzJmNXv1vxpWBnnf8YjnRZX4dbYLhNrZYH9EcQFJsbBir15I0uDe ErVajnlYFrWELfa2qcsnhkwdSqUHh2FhCaQlIassjQ1zRNhnh2w0YR2cRalHYd85A2TYVC+o 3/Q9BVvaALStVTYbN2Be8HT8fyAmvRQQjUOGbXOljjHLFvAQO8l3c22sRF2AiHQu138HJpou W8bLpxjx9MR37T
- Ironport-phdr: A9a23:tkyllxNra227Lw/rJPMl6nZ3AxdPi9zP1u491JMrhvp0f7i5+Ny6Z QqDv6sr1QeCBNmKo7Ic0qyK6f2mATRBqb+681k8M7V0HycfjssXmwFySOWkMmbcaMDQUiohA c5ZX0Vk9XzoeWJcGcL5ekGA6ibqtW1aFRrwLxd6KfroEYDOkcu3y/qy+5rOaAlUmTaxe7x/I Au3oAnLq8UanYRuJrs+xxbNv3BEf/hayX5yKV+cgRrx5t288IJ//yhVpvks69NOXaLmcqs3S rBVEC4oOH0v6s3xshnDQwqP5n8CXWgTjxFFHQvL4gzkU5noqif1ufZz1yecPc3tULA7Qi+i4 LtxSB/pkygIKTg0+3zKh8NqjaJbpBWhpwFjw4PRfYqYOuZycr/bcNgHQ2dKQ8RfWDFbAo6kb 4UBEfcPPfpWoYf+u1QAohSxCBKwBOz01jNEmmP60bE43uknDArI3BYgH9ULsHnMttr6KaISU eGzzKLVyjjMde5Z2TL86IjOaR0svfeMXa5wccrLzkkvDwXLgEyRp4LmIT6ZzOMNs26e7+phS e2vkWknqxp2ojih2scgkJXGhoUQyl3d8yhy3Yk6K8GiRkFhfd6kDIVftzucN4ZuXM4sTW5lt Sc+x7AHt5C2fCoHxZspyhPfdfGKcoqF7xP/WOuQITp0mm5odbKiixqv8UWuxeLxWtW23VtIs idLnN/BvW0D2RzU78iIUPp9/kG51DmT0ADT7vxEIUUvmqraMZEt2KA/mYcOsUjbES/2mVn2j K+Ldko/4OSn9+PnYrD+qp6cMI90lx3+Mrk1lcOhG+g3Lg8OX22d9O+h17Pj5VX0TbpWgvEsj 6XVrJLXKd4fq6KnGQNY3Zov5w6hAzqnzNgVk3wKIE9ZdB2cjoXkPkvBLOz2APq6mFuhkDJmy vXIM7H8BJjGM2LNn637fbln7k5R0Aozws5b55JTErwPOO7+VEjsuNDEFxM0LhS6zuT+BNV6z YwRR3iDAqiEMKPOqlCI4f8vI++Ra4MPoDb9Mf8l5+LwgnAlhV8dfK6p3Z0NZHC/A/RmP0GZY X3rgtcCC2sFog0+TOnyhF2DVz5ceWqyUroz6z0nEo6qEJvPS4K3jLGFwiu3BJJbanxeBlCJC 3jodoGEW/kWaCKVJ89siiYLWqWkS48g0xGjrxX1y7x7LurU4C0Ysorj1Nxy5+3clBE96SZ4D 8Ob02GITmF7gnkIRzgt3KB4r0x91k2P3rR/g/xdDdBT4ehGXR8gNZHA1+x6F8zyWgXZc9uXU FqmWMmpASktTtItxN8De11yG9G4gRDFxiqqHr4VmqeKBZw196LTxGLxKNxnx3bH0qkhlVgmT dFVOW2onK5z7xLTCJLRk0WFi6aqcrwR0zLK9Gea1GaBoEVYUBNrXqjeRnAeZk7Wrczj6U/YT r+uD64nMgpbxsKYJKtKcI6hsVITDv7sNN32Z2Oqh3z2DhaBwraBdpGsYGhXlHHUB0QNuwQS5 mqdcwM+DyOkrnjFSidjQxanKU32/OVzsnKwCEUwxgeTckxJ1ryv+xdTi+bWA6cdxL8ItT0go HN+GF+7xs/XI9uGvQtoOqtGN5d1qlxOyW/WsBZ8M4eIKrxrwFUXOUwjtEry2hpwEIRNiuAvs HpsxwMkberS21RYMjicwJrYO7vNK2C08grlI/rd3Uib29KL8I8O7u45ohPtplf6OFAl9iBu3 9xU1TPI75nPDQw6eJTtUlww7zxdiJDxJC474oLfz3p3Nqeo9DTF3oR6V6Me1h+8coIHY+u/H wjoHphCbyDPAOkjmlzzKwkBIPgX7qk/ecWva/qB3qeveudmhjOvy2pds8hmykzZ0S16R6bT2 oodhemC116OWzL9in+ItNz3g4dcQRY9P0H5zi7hBYVLYbZ1c5pNAmCrcIWs3tsrv5f2QDZD8 UK7QVYP2cunYx2XOlXx2AxW/U0RvXy9njO8yDN1mHcuqK+e1zbJ2OPsaFwMPWsYDHJ6gwLUK JOvx8sfQFDubwUtk0694l3mwqFAuKllB0/6ZB4QOgLQcCRlWKb2saeeaclS7p9uqT9QTOm3f VGdTPj6vgce1CTgWWBZwVjXbhmMvZP011x/gWOZdjNoqWbBPNt3zlHZ7cDdQvhY2nwHQjN5g H/ZHAr0Od7h5tiSm5rZ14L2H2u8Sp1edzXqxoKcpWO642NtGxi2g/G0nJXuDwE71Sbx09QiW z/PqV7wZYzi1qLyNuwCHAEgDVP56sxSM4dikpE3nLU39lkxwJKT+HsMi2DoNttHn6n5aTtFR DIGxcLU/BmwwFdqfRfrj8ryUnSQxNckZsHvPjtQg3piqZEQTvvMv9km1WNvr1G1rBzce614l zYZk7417WICxvsOs0wrxzmcBbYbGQ9ZOzbtnlKG9YPbzu0faWCxfLy3zEc7k8qmCeTIqw1ZW XDRc5E+HTV39sF4P1PHlnr174DvYt7LatwP8BaTll2T6oodYIJ0jfcMiSd9bCj0sXgkzcYSi wBux5aimK+oCk4r+6S8AxVCMSbyad9V8Tbox/U7/I7ez8WkGZNvHS8OVZ3jQKezET4cgv/gM h6HDDw2rnrz9aP3JQaE8w8mqnvOF8ruLHSLPDwDyt4kQhCBJUtZiQRSXTMgn5d/GBr4jMDmd U544HgW6Dua4lNFxudpMTH2VHvfvgCwbjA7SZPZKxxT7wpY4FzSP9DY5eV2Vy1V5ZyuqgWRJ 3fTO1wOVDlWHB3eQQy7drC1gLuIu/CVHO+/M+fDbf2VpOpSWu3JjZOj3416/iqdY8CGP31sF fo+iQJIWXF0Hdicmi1aF3RRznqSKZ/B4kvkqUgV5oil/f/mWRzi/96KArpWa5B0/gyuxL2EP KiWjTp4LjBR0tUNw2XJwf4Rxg136Wkmej+zHLAHrSOIQrjXn/odBhIeaiVbPc1U77g7xg1KN s/QzNTz079zlPkuDFlZE1fmn4v6AK5Ca3H4L17BCEuRYf6PKTjKxen+Z7+8U7pIiOJbthb2v jCeEkT5OS+EmSWvXBeqe7Ip7mnTLFlVv4ezdQxoAG7oQYf9axG1B9RwiCU/3bw+gn6ZfX5ZK zV3dFlB66GB9S4NyOsqAHRPtzA2SIvM0zbc9eTTLYwa9OdmEjgh3fwP+2w0kvNU9H0WGKQzy XGU9pg25Aj72uiXlmg7CFwX8mkN3MTT+hw8XMeRvphYBSSZplRUtT3WU1JS4II5Qtz35/IJk oSJyP21cHEatIuLtcoEWZqOIZreYiN4aEjnRGaMXllCEW7OVymXhlQDwqubriTH98Fj+Jaww MFcGPgHBRQ0Dq1IUE09RY5bec4lUG98yuzL1JZQtyj58UG0Jo0Sv4iZBKibWay9cW/A37cYP 0BayuugddZBcdCik016NAsgldyTSROJBIJD/nU6PAFs+B0foj8jFCV20kbhIGtB+VcrHOWv1 l4zgwp6O6E28Sv0pk0wLRzMrTcxl084nZPkhyqQeXj/NvX4UYZTAivy/08/V/GzCx5ydhG3l Fd4OS3sYZt01uMlX0Y0zQjWtN1IBOJWSrBCbFkI3/aLav400FNa7CK62UtA4uiDApxn8WliO ZKhtHNP3Qt/YcV9efSWffIWiAkKwP7W9iaznvg82gofO1oA/CuJdSgEtVZJfrgqKiy0//B9v AyPnzwQHQpEH/Euo/9s6gY8I7Hcl2S5i+EFexr3a7TMSsHR83LNnsOJXF4qg0YBlk0fuKNzz d9maU2fEUYm0LqWER0Nc8vEMwBcKcRIpx2xNW6Dt/vAxZVtMsCzDOftGKWHuKMVhGqtGhopB YMU6sMOH5Lq10fdLMz9K6UCxwlr7wPubgbgbrwBaFeQnTELrtvqhodwxpVYLyoBDH9VFwySv +6SjCl1xf2JUZExf2sQWZYCOjQuQsqmliVFvnNGSj6qzuYezwvE5Dj57He1bnG0f59oY/GaY glpAde99GAk8qS4vlXQ943XO2DwMdkx8s+K8+4RoIyLTu9FVbQo+VmJgJFWHjb5NgyHWc7wP ZX7bJMgKMD5GmrvGELqkCo7Fo/wJIr/cvDO0FuuHcAM99DGlDE7aZ3hTndHQ0g2/6dbo/siA G9LK5sjPUy17UJnb/T5eEHAlYzyC2e1dWkPF6UZkbr8P/oPiHNzJu6ilil6R8ljnbDuqBwDG MlS3EOZmabGBcEWUDCtSCZUI1yd/HNgxWY9br1gkKBjkVvJqQdOaTnTLb4wMTUWsY1kXgHCe S0uWDh/Ggf578KL4xbyjeobp3IPxo8Ng+MZ6COstceHOGD+H/Hy4ZTN7Xh6ZIB/8fQoaN7tf pPd5p2GxmSNHt6N6EXAWSq+XZKydfBZJj5YWv5QnWYqOMdAvoxE6EErUdw5KaAJA64p9OnCg d9MJCgOzTUeT6en8x0pxOC63rrRjBCLd5o+dhcDtcca6jP8ewhfR3pG4YWFCMDRnWLCTXUXK gAO6wgK/BgHioJ7YuHi5szPUYNIzDlV5flzV3mSfqQ=
- Ironport-sdr: 64a1e03b_gtAev3/YDQFzWuoGAlPE/wM4S3QSfTtGbQHBy949Zw01R+A vPCZ7cUB1npaUT4/ReD9tQO5JnDk4S8l+fgMijw==
- Msip_labels:
Salut Louis Auguste « L'Enfermé » Blanqui,
A new implementation of dependent types via Dosen's substructural
categorial programming: example of the Yoneda lemma for fibrations
This closes the open problem of implementing a dependent-types computer for
category theory, where types are categories and dependent types are
fibrations of categories. The basis for this implementation are the ideas and
techniques from Kosta Dosen's book « Cut-elimination in categories » (1999),
which essentially is about the substructural logic of category theory, in
particular about how some good substructural formulation of the Yoneda lemma
allows for computation and automatic-decidability of categorial equations.
The core of dependent types/fibrations in category theory is the Lawvere's
comma/slice construction and the corresponding Yoneda lemma for fibrations
(https://stacks.math.columbia.edu/tag/0GWH), thereby its implementation
essentially closes this open problem also investigated by Cisinski's directed
types or Garner's 2-dimensional types. What qualifies as a solution is subtle
and the thesis here is that Dosen's substructural techniques cannot be
bypassed.
In summary, this text implements, using Blanqui's LambdaPi metaframework
software tool, an (outer) cut-elimination in the double category of fibred
profunctors with (inner) cut-eliminated adjunctions. The outer
cut-elimination essentially is a new functorial lambda calculus via the «
dinaturality » of evaluation and the monoidal bi-closed structure of
profunctors, without need for multicategories because (outer) contexts are
expressed via dependent types. This text also implements (higher) inductive
datatypes such as the join-category (interval simplex), with its
introduction/elimination/computation rules. This text also implements
Sigma-categories/types and categories-of-functors and more generally
Pi-categories-of-functors, but an alternative more-intrinsic formulation
using functors fibred over spans or over Kock's polynomial-functors will be
investigated. This text also implements a dualizing Op operations, and it can
computationally-prove that left-adjoint functors preserve profunctor-weighted
colimits from the proof that right-adjoint functors preserve
profunctor-weighted limits. This text also implements a grammatical
(univalent) universe and the universal fibration classifying small
fibrations, together with the dual universal opfibration. Finally, there is
an experimental implementation of covering (co)sieves towards grammatical
sheaf cohomology and towards a description of algebraic geometry's schemes in
their formulation as locally affine ringed sites (structured topos), instead
of via their Coquand's formulation as underlying topological space...
References:
[1] Dosen-Petric: Cut Elimination in Categories 1999;
[2] Proof-Theoretical Coherence 2004;
[3] Proof-Net Categories 2005;
[4] Coherence in Linear Predicate Logic 2007;
[5] Coherence for closed categories with biproducts 2022
[6] Cut-elimination in the double category of fibred profunctors with inner
cut-eliminated adjunctions:
https://github.com/1337777/cartier/blob/master/cartierSolution13.lp
[7] Pierre Cartier
Subscribe for live updates, WorkSchool365.com :
https://www.youtube.com/@workschool365
FAQ:
* How is « substructural » contrasted vs « synthetic » ? The substructural
Yoneda lemma for fibrations is expressed via a blend of the
universality/introduction rule of the transported/pulledback objects inside
fibred categories:
constant symbol Fibration_con_intro_homd : Π [I X X' : cat] [x'x : func X'
X] (G : func X I) [KK : catd X'] [F : func X' I] [II : catd I] (II_isf :
isFibration_con II) (FF : funcd KK F II) (f : hom x'x (Unit_mod G Id_func) F)
[X'0 : cat] [x'0x : func X'0 X] [X'' : cat] [x''x' : func X'' X'] [x''x'0 :
func X'' X'0] (x'0x' : hom x''x'0 (Unit_mod x'0x x'x) x''x') [JJ : catd X'0]
(MM : funcd JJ x'0x (Fibre_catd II G)) [HH : funcd (Fibre_catd KK x''x')
x''x'0 JJ],
homd ((x'0x' '∘ ((x'0x)_'∘> f))) HH (Unit_modd (MM ∘>d (Fibre_elim_funcd II
G)) Id_funcd) ((Fibre_elim_funcd KK (x''x')) ∘>d FF) →
homd x'0x' HH (Unit_modd MM (Fibration_con_funcd G II_isf FF f))
(Fibre_elim_funcd KK (x''x')) ;
together with the composition operation (in Yoneda formulation) inside fibred
categories:
constant symbol ∘>d'_ : Π [X Y I: cat] [F : func I X] [R : mod X Y] [G :
func I Y] [r : hom F R G] [A : catd X] [B : catd Y] [II] [FF : funcd II F A]
[RR : modd A R B] [GG : funcd II G B], homd r FF RR GG →
Π [J: cat] [M : func J Y] [JJ : catd J] (MM : funcd JJ M B),
transfd ( r ∘>'_(M) ) (Unit_modd GG MM) FF (RR d<<∘ MM ) Id_funcd;
* How is « J-rule arrow induction » contrasted vs « fibrational transport » ?
The above intrinsic/structural universality formulation comes with a
corresponding reflected/internalized algebra formulation, which is the comma
category where the J-rule elimination ("equality/path/arrow induction")
occurs. Similarly, pullbacks have a universal formulation (fibre of
fibration), an algebraic formulation (composition of spans), or mixed
(product of fibration-objects in the slice category).
constant symbol Comma_con_intro_funcd : Π [A B I : cat] [R : mod A B] (BB :
catd B) [x : func I A] [y : func I B] (r : hom x R y),
funcd (Fibre_catd BB y) x (Comma_con_catd R BB);
constant symbol Comma_con_elim_funcd : Π [I X : cat] (G : func X I) [II :
catd I] (II_isf : isFibration_con II) [KK : catd I] (FF : funcd KK Id_func
II),
funcd (Comma_con_catd (Unit_mod G Id_func) KK) G II;
* Are substitutions explicit or intrinsic/structural? Ordinary (non-fibred)
cut-elimination considers pairs of composable arrows p : X → Y then q : Y →
Z, but fibred cut-elimination should also consider pairs of arrows p : X →
f*Y then q : g*Y → Z, where f*Y is the pullback of Y along f, and such a pair
is not manifestly/grammatically/syntactically-composable but only
semantically-composable as g'*p : g'*X → g'*(f*Y) then f'*q : f'*(g*Y) →
f'*Z, where f' = g*f is the pullback of f along g and g' = f*g is the
pullback of g along f. The remedy is to make those pullback
intrinsic/implicit in the implementation's grammar, so that p : X → f*Y is
really notation for a judgment with 3 parameters X, Y and f, which can be
read as « p is a fibred arrow forward-above the arrow f », and similarly q :
g*Y → Z is read as « q is a fibred arrow backward-above the arrow g », and
more generally r : g*X → f*Z is read as « r is a fibred arrow above the span
of arrows g backward with f forward ». Ultimately it should be possible to
express arrows fibred over polynomial-functors, so that the distributivity
(ΠΣ = ΣΠε*) in the composition of polynomial-functors is intrinsic in the
implementation's grammar... Finally, all of these intrinsic structures are
reflected/internalized as an explicit substitution/pullback-type-former for
any fibration.
* What is the difference between the Pi-type of sections and the
category-of-functors? Ordinary Pi/product-types consider only the sections of
some fibration, but Pi-categories should consider all the
category-of-functors to some fibration, this leads to the new construction of
Pi-category-of-functors. The preliminary implementation in this text does not
yet use the more-intrinsic formulation using functors fibred-above-a-span of
functors. It should be noted that Sigma/sum-categories can be already
intrinsically-implemented using only functors fibred-forward-above a single
functor.
* And why profunctors (of sets)? The primary motivation is that they form a
monoidal bi-closed double category (functorial lambda calculus). Another
motivation is that the subclass of fibrations called discrete/groupoidal
fibrations can only be computationally-recognized/expressed instead via
(indexed) presheaves/profunctors of sets. And the comma construction is how
to recover the intended discrete fibration. Ultimately profunctors enriched
in preorders/quantales instead of mere sets could be investigated (Tholen's
TV, lol).
* What is a fibred profunctor anyway? The comma/slice categories are only
fibred categories (of triangles of arrows fibred by their base), not really
fibred profunctors. One example of fibred profunctor from the coslice
category to the slice category is the set of squares fibred by their diagonal
which witnesses that this square is constructed by pasting two triangles.
This text implements such fibred profunctor of (cubical) squares (thereby
validating the hypothesis that computational-cubes should have
connections/diagonals...). For witnessing the (no-computational-content)
pasting along the diagonal, this implementation uses for the first time the
LambdaPi-metaframework's equality predicate which internally-reflects all the
conversion-rules; in particular the implementation uses here the
categorial-associativity equation axiom, which is a provable metatheorem
which must *not* be added as a rewrite rule!
- Re: [Coq-Club] [Agda] position in Deducteam — Lawvere/Dosen session on categorial logic/programming @ CT2023, admin, 07/02/2023
Archive powered by MHonArc 2.6.19+.