coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Meven Lennon-Bertrand <mgapb2 AT cam.ac.uk>
- To: coq-club AT inria.fr
- Subject: Re: [Coq-Club] Formal Way to Express Provability in Coq
- Date: Fri, 6 Oct 2023 17:38:28 +0100
- Arc-authentication-results: i=1; mx.microsoft.com 1; spf=pass smtp.mailfrom=cam.ac.uk; dmarc=pass action=none header.from=cam.ac.uk; dkim=pass header.d=cam.ac.uk; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-AntiSpam-MessageData-ChunkCount:X-MS-Exchange-AntiSpam-MessageData-0:X-MS-Exchange-AntiSpam-MessageData-1; bh=n/M4ixuJgPWmJvtYX+upovJXgbnLfz0asnDg9+5JCfo=; b=F+AqEK65iiBsqO+y+jzlRa8gpGZfeOnwo8iwuhdD5q4hSRy5uoYFvcF52qPb1YtelLhPL/N6dblQO6OWssCuPpzuyGLNFrkst9IBp2Hu0lSNHnAc10wPie7NyMA4crbkoJD9BpDqBP/GMG9df2CZZZX56opoNxzMows5mzjXpQQQsNNAtcE2L+urpwaPcln9NhoPkhW+6wRCxVnzXnKnJ7c63aidecCSficyI876r11CxFhbHbM/g/XxgAXcJjMJIOOnZplPrA1UlTMZdqw09A2SU2GbKpu3yQNuSXlMSXs8xNbSm60IGXKTucrCYP3gW4sqR80rI0Vy0xL03h4g+Q==
- Arc-seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=NCaJgOzBDGGf1b9mMMxwz8xboqQQfkpuYyellP5xGYRqugW/MD4gBU0WrQHkQx4I7eTLxnJPdI4bnoJYzlYFSmylaHMxBxEVaWbiUmqZMbNh8Jqzwq8ajj/pAUCaUr7FRjwmgTyxs6cSYTOmVx71iXHDdHcW+GnRNLtja9zJ+WR7yI91nJI+X2OB84ZH5JJzknn42/mWP/LYXXS+IPXUCgBW28oDgAmJBUNI38fCjJHGQlCRnGpNcfcgJbj4opuxiUt21amsTWoxUFYNahzigJjIF4ayc0yZKt5czshfNoINKtvHqVQAV0dF5ywlRnRK3Oh4pRsk8VIgK708Gitz9w==
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=mgapb2 AT cam.ac.uk; spf=Pass smtp.mailfrom=mgapb2 AT cam.ac.uk; spf=Pass smtp.helo=postmaster AT GBR01-LO4-obe.outbound.protection.outlook.com
- Ironport-data: A9a23:mVJpgqj5qTenufcJ6qazevhxX161NRsKZh0ujC45NGQN5FlHY01je htvWG6HPPiCMzfxetwnb4qx9ElU7JTWztJnGgJorns0RX9jpJueD7x1DG+gZnLIdpWroGFPt phFNIGYdKjYaleG+39B55C49SEUOZmgH+a6UqieUsxIbVcMYD87jh5+kPIOjIdtgNyoayuAo tqaT/f3YTdJ4BYqdDpPg06/gEk35q+r4GtG5gVWic1j5TcyqVFFVPrzGonqdxMUcqEMdsamS uDKyq2O/2+x13/B3fv4+lpTWhRiro/6ZWBiuFIOM0SRqkQqShgJ70oOHKF0hXG7JNm+t4sZJ N1l7fRcQOqyV0HGsLx1vxJwS0mSMUDakVNuzLfWXcG7liX7n3XQL/pGFhE9HYYy3/pLCmB39 /giCgIrTxPbrrfjqF67YrEEasULA+PRZNpanlY8iDbTALAhXIzJRLjM6ZlAxjAsi8tSHPHYI c0EdT5oaxeGaBpKUrsVIM5m2r7w2T+mKWce+Q/9SakfuwA/yCR037H1OoD9cdWPA8xe2Fubz o7D1zqpWklBboHDodaD2nXztLTJhBrkYa49D5+A8Nh7mVHD1GNGXXX6UnPg+KLi0hfkMz5FE GQf/TNrpqwv/mSwX9zlVlu5pmSFt1gSQbJt//YS7QiMzu/Q5FqWDHJcFzlHMoR36YkxWCAg0 UKPk5XxHztzvbaJSHWbsLCJsTe1PitTJmgHDcMZcecby8Ozq6E4pDfTct1iKayxtP/HPxDzm xnf+UDSmI4vpcIM0qy6+3XOjDStuoXFQ2YJCuP/DzrNAuRRNdbNWmC41bTIxasZcd7JHjFtq FBBypPGhAwbJcvV/BFhVtnhC5mGzZ5p2hX4hlhjGJ9JG9+F1lX/R+i8DBlTIkhtO8AIEQIFj WfWsAJVoZtUYHSgd/cuZITrU5V3i6/9Cd7iS/bYKMJUZYR8fxOG+ycoYlOM22fqkw4nlqRX1 XannSSEUyty5UdPlWveqwIhPVkDmnBWKYT7Gc+T8vhf+eDCDEN5sJ9cWLd0Usg37bmfvCLe+ MtFOs2Bxn13CbOvPHSMqdBIcAtXdBDX4KwaTeQGL4ZvxSI3QAkc5wP5m+hJl3FNw/QLz7aTr yjVtrFwkwCn1CaXQel1VpyTQOi2Bs0n9ChT0d0EOFejwX84ZoizpK4NaoE6FYTLB8QypcOYu 8ItIp3aatwWEmqv021EMfHV8tY+HDz13ljmF3T+P1ACk2tIHFGhFinMJVe0q0Hjz0Of6aMDn lFX/liEEcJTHVw9VJ2+hTDG5wrZgEXxUdlaByPgSuS/sm21mGSzA32o3q0EMIsXJA/dxzCX8 Q+TDF1K7aPOuoI5up2Bz6yNs47jQaM0E1t4Dlvry++8FRDb2W6/nq5GcuKDJg7GWE3Opa6NW ORyztPHCsMhompkiYRHPohO8bMf/Prq/r9T8RRlFi7EbnOtEbJRHUOF1shu6IxOypRkuyKmf n+fwv9xYKu4Pf74GgUvfDsgP72J0MgJkRnw8/gaHkf2yytp9rvaT0liBQKG0n1HCL5TLoke4 PwAvfQO4FeVkSsaMdehjwFV+V+TL3cGbb4Vi5ECDKLviSsp0ltnc7WFLgPXubakdMRqIEoxB z2blpr5mLVXw3Tdf0oJFXTi2fRXgbIMsktoyGAuCkuomN3XoO0exzxUrCoKSzpKwiV90+5cP nZhM2t3L/6s+xZqnM1yYHC+KTpeBRG2+l3D9HVRrTf3F3KXb23qKHExHc2v/0pDqmJVQWV9z YGikW3gVW7nQdH10i4MQnVakv3ET+Ig0i3ZmcuiIdaJIIliXxrhnZ2VRDQprznJPJoPoXPp9 MdW+NR+U6nZDRIrgrYaDtCa3IsASRrfK21lR+pgzZwzHmrdWW+T3B6OIXvsevJceqXD4G6jK slUPskUfQ+P5CWPiTE6BKA3PL5/msAy1ucCYr/GIW0nsaOVizhU7KLr6Sn1gVE0T+VUkcoSL p3bcxSAGDeygUR4tnDsrs4eHEaFevgBORPB2d6q/NUzF54stP9mdWcw2OCWu1SXKA5WwAKGj jjcZqP5z/1Q9qo0ptHCSp58PgSTLc//cM+q8wrp6tRHUo7pAPf07ggQrgHqAhRSMb4vQO9Ir LWqsuCm+GPevb0zbXLVpInZKYlN+veJfbR2NuDZESBkuBWsCe7WzTkNwWSaEaBysch845CnT jSoacHret8yXcxc9UJvaCNfMkg8DoL3ZJy9pRKs8q2FGzkG8An9NNj832TYXWJaUS4pOpPFF Q7/vci11O1YtIhhABwlBelsJp1FfG/YRqotcuPuuQmiDmWHhk2Ivp3gn0EC7Q7nJ2alEsGgx 774XTn7KQqPvZ/XwOFjs4BdugMdCFB/i7ISemMf49tHtCCoPlUZLOgyMYQ0Nb8Mq3bcjKrHX TDqaHcuLQ7fXj4eKBX134nFbzelX+cLPo/0Gywt80aqcByJPYKnAoUwxhc4tj0yMnHmwfq8I N4TxmzoM1Ljitt1TOIU/bqgjf0h2vrewWkS9Fvgl9DpRSwTGqgOyGcrCT8lufYryC0RvB6jy akJqWF4rIWTZmTLSZ8lX1kJXRYTsXXo0ikiajqJzJDHoYKHweZcyfr5febuzrkEa8dML7kLL Z8yb3XY+HiYgxT/poNw0+/FQ4ctYR5IIiR+BKTqQEsblOet6QzL+uscyDEXQphKFBF3Sjvge /rF35T6LE+MLQZY0/uLym3lPn63vm0kV1n0seI0mdMKfdHVATQUl9hGAT8X8a3NlpU=
- Ironport-hdrordr: A9a23:t9pL6qN9VRkgvcBcTzH155DYdb4zR+YMi2TDiHoddfUFSKalfp 6V98jztSWatN9jYgBGpTngAsm9qBbnmaKdjrNhX4tKMDOWwFdAabsSlrcKoAeQZxEWlNQttp uIGpIWYLOQMbE5t7eC3ODRKadc/DDtytHNuQ6x9QYKcegnUdAE0+8vYTzraHGeCTM2caYRJd 653I5qtjCgcXMYYoCSAWQEZfHKo5numIj9aRALKhY74E3W5AnYnoLSIly95FMzQjlPybAt/S zslBH43Lyqt7WexgXH32HewpxKkJ/Ky8dFBuaLls8JQw+c/TqAVcBEYfmvrTo1qOag5BIDl8 TNmQ4pO4BJ53bYbgiO0GjQ8jil9Axrx27pyFeej3emi9f+XigGB81Igp8cWgfF6mI71esMmp 5j7ia8jd56HBnAlCPy65zjTBdxjHe5pnIkjKo6k2Ffa40Dc7VcxLZvt3+9KK1wUB4S1bpXX9 WHVKrnlbhrmBKhHjjkV1BUsZGRti9ZJGbGfqAA0vblowS+0koJj3fw//Zv70voxKhNNKWs2N 60TJiAtIs+PPP+PpgNcdvpB/HHQ1DwfQ==
- Ironport-phdr: A9a23:0NVMPhbji40wM5f8iqNEsdL/LTGy2YqcDmcuAnoPtbtCf+yZ8oj4O wSHvLMx1g+PAduQsqocw6qO6ua8AzJGuc7A+Fk5M7V0HycfjssXmwFySOWkMmbcaMDQUiohA c5ZX0Vk9XzoeWJcGcL5ekGA6ibqtW1aFRrwLxd6KfroEYDOkcu3y/qy+5rOaAlUmTaxe7x/I Au1oAnLucQbgIRuJrstxhfVv3BEf/hayX5yKV+cgRrx59288IJ//yhVpvks69NOXaLmcqoiU LdWFi4mM2c75M3qsRnMUw6C7WYCX2sVjxRFHRHL4An1UZntvCT6sPF92DSBMs3tUb80QzWi4 Lx1RxLulSwKKiQ28GDTisx3kaJbvBesrAFxzoLIfI2YMud1c6XAdt0YWGVBRN5cWDBCDI2yY YQBEvQPPehYoYb/qFQDtgGxCRW2Ce711jNFiH370Ksn2OohCwHG2wkgEsoJvnvKstX6KqESW v2zwqbWyzXDafRW2THk5IXVbB8hu+2MXahqfsrX1EYkCgTIjlCfqYP/JzOazfoBvnOH4OV6U OKjkXQopB1rrjiyxcchk4/EjZ8axV7Y7yt22po1JcGmR05hZ96pCJ9dui+YOoZqQM4sQ39lt Tsmx7Abp5O2YikHxIg6yxPddvCJfJWE7wztWeqPLjp1i2xoda+8ihuz7ESuxO3xW8ey3V1Xo CRFldzMuWoM1xzV8sWHT+Vy/lm/1jaJzQzc8P1LLEYpnqTYM54s2rE9moYJvUjeAiP7ml/6g LKIekk64OSl7+Tqbq34qpKdK4N5hATzPrkylsOlAOk1NwkDU3SH9em5z7Lv4Uj0TbBXgvA2l KTSrYrUKt4BpqGjBg9YyoYj5Ai7DzehyNkWnGQKIk5ZdB6aloTnPUjALf/hAfe4mFujji1nx /fbPr39GZrNKWXDkLH8crpn805c0g0zzcxB6J1IFrEBIfXzWknruNzfEx85Lwi0w+HgCNV+z I8RRWWPAqqBPKPTt1+H+P4vLvGDaYMJojrxNuQp6vz0gXMkh1MRY7Ol0J8XZXygG/RpOUSZY X7igtcbFmcKuxIzTOnliFKYST5cfGi+Urkg6T4hDYKqF53MSZy3jLyc3ye3BptWaXteBVCWD Xjob5mEW+sLaC+KP8NtiiYEWqS5S489yRGusxf3xKZgLurN4yEXqZbj1MVu6ODIjhEz9Tl0D 9yH3G2XTmF0mHkIRz4s06xlr0x90ATL7a8tiPtBUNdX+vlhUwEgNJeawfYpJcr1X1fkc8mET h6CT9OgBjd0ZN8r38UHZUo1T9CthwjJhQKhCrpTnrfNGZ9iofGU5GT4O8sokyWO76ImlVRzG qOnVEWjj697rE3IApLR1l6ej+CsfLgd2yjE8CGCy3CPtQdWSl04Sr3LCFYYYEaettHl/gXaV bb7DLsuKgEb4cWLL+1DYZv0jgYOX+/tbezXeHn5gGKsHVCNz7KIYpDtfjAY0yzFAhIsmAkWu 3+NcxU9VW+6u2yLNDV1Dhr0Zl/0t+lzrHTuVkgv0wSDdFFszZKa0CRN3Lm4bK9W2bgJ/iA8t z9zAVCxmcrMDMaNrBZge6MaZs4h5FBA1iTSsAkV0oWICadkixZedg12uxirzBBrEsBbltBsq no2zQ10IKbe0VVbdjre04qicrvQYnL/+hyiccu0khnXzcqW96ET6f85t0SrvQenEVAn+mlm1 N8d2mWV55HDBg4fGZzrVUN/+x9/rrDcKi4zguGcnXhjOLG+6BfJ0tdvDeBj1xXhN9ZTPaWYF RPjRtUADpvmI+grll61KxMcabwKsvdsYIX/LaHAifP4WYQo1CirhmlG/o1nh0eF9i4nD/XNw 45A2PaAmA2OSzb7il6l9MHxg4FNIz8ITQ/dgWDpApBcYqpqcMMFE2CrdoeyydxmjcTFUHdds leoQU4FkpzMG1Lafxnm0Atc2F5C63mokDOylRR/mjRvp6HZwS+EkKzyMREAPGBMXmxri1zhd JO1g94tV0+tdwE1lRGh6C4W3oBjrb9kZynWSEZMJG3tKn16F7C3rvyEatJO75UhtWNWVv69a BaUUOy1rxwf2iLlV2xQoVJzPzSls43zxTRxgWfbJX01sXmRdcxrxBjZ7cDRXrYNhnxfHHY+0 GONQAnhd9Cytc2ZjZLCrvyzWwfDHtVIfC/nwJnB/Cq36Gt2AAGuyvW6m9npCw8/gmfw09hnU zmNrQ6pPtGtjvzld7s9JA85WQyZiYIyAIx1n4ouiYtF3HEbgs7Q5n8biSLoNs0d36vibX0LT DpNwtjP4QGj1lcwSxDBj4//SHiZxdNsItegZWZDkCcy5thAUo+f5bkClCAzv1ny/mezKbBt2 ywQz/cj8itQhu4AoAB35i6UB/YbFg9FPma/3wTN5Ne4oqJNYW+perXlz0tyk+eqC7Saqx1dU nL0KfJAVWdgq99yO1XW3Djv+5npLZPOOMkLuETewF/QyvJYI5Urmr8WiDp7bCjj6GY9xbde7 1Qm3Inm7tTfbTQ3uvr/WlkBa3X0f59Bpmmr1P4B2J7Qh8f2QN1gAmlZAcGuFKrwVmpU7bO+a 2PsWHU9sivJQOKDW1PArh8g9zWWTNiqLy/FfnBBlIc7HUDPKhAH2FJGG2lq+/xxXgGymp67e R8gtGlIvwz29kMXmLAva0i3U3+B9l2hMm5mEcHGfhQKtloQtx+NaZ7Mqb8rekMQtpy58l7XI zTCNV0RVDMHBhTfVVu7ZuH8t56dqqCZHrTsdfKWOOfX8LUMWavQnsChitM+rWTLa5/He3BmC 7dTNlNrZXliAIyZnjwOT3dSjCfRd4uAow/6/CRrr8e5+fCtWQT15ILJBaEAedlo/hm3h++EO YvyzG5hLi1E05oX2XLS4Jc15gZLzgVJK3yqG7lGsjPRRqXNnKMRFwQcdy54KMpP6eQ7wxVJP snYzNjy09saxrY5BkxEWlrohsyyLZBSZTjlaxWeXhzNZenOLCaD28ztZKKgVbBcxP5ZsRG9o 3fTEkPuOCiCiyi8Vx2rNrIp7mnTNxhftYehNxd1XDS7Cou+NVviaoUx3GBlpN98zmnHPmMdL zVmJkZEr7nLqDhdnu06AGtZqHxsMeiDnS+dqejeMJcf9/VxUUEW36pX5mo3z7xN4WRKXvtwz WHXodd2qQuOmeCKjDNsFgdN4GUu5srDrQB5NKPV+4MVE27D5w4I5H6MBg4iiPFfUoSqn4cMj 9/FmeT0NStI9M/S8Y0EHc/IJcmbMX0ndx30BDrTCwhDRjmufzK65QQVgLSZ8XubqYI/o57nl c8VS7NVY1cyE+sTFkVvGNFRaIcyRD4vlqSXydIZ/Xfr5geEX91U59qUM5DaSeWqMjuSiqNII gcF0a+tZ5pGLZX1ggRjcgUowNyMShCWBZYV5XQ8Jg4s/BcRqD4nFjJ1gwS9LVrzhR1bXf+sw kxr0E0nObxrrHG0pA5rblvS+HlpyBV3xYqj2XbJN2euZKaoA9MMAnKt5RFoa8H1H14tP1/1w RwBVn+MRqoP3eFpLTk50VaF65UTQaUOH+oYMVcR3a/FPfxwiAYF83z1yxMfvrmVUcM6xlltL MbJzToI2ho9PoQ8ffWCffMQnFYM3vnctXfwjrJjh1JHb0cVrjHIcXZR6hVRb+soe3LzrOI0s VTQyXweIiBJXv4u6JqCGWs2MuHGximmzr0RcyhZ0sSUJqbfsmOGiM3aGjvYN2snvXMdpP1S9 ptmdECZEUcy0LGWChIFc9LYLh1YZNZT836VejuSteLKwtR+OIDvT4jV
- Ironport-sdr: 6520385e_O2fuUw8630iwSTtWlVJ1iXJwJvLRWQIAKTiWFfWAlNasKSE NS98BRe7ST3uFZJJAIhI2dqyoKRgumoM0BRqKSA==
Hi Mukesh,
One thing that you can do is use normalisation: by normalisation, if there is any proof at all, there must be a proof in normal form. But the proof that you tried and failed to complete basically demonstrates there is no such normal form. So the statement is not provable.
More generally, the way to demonstrate formally that a statement in Coq is not provable is to construct a model where the interpretation of the statement is empty. In the case above, this model is the very syntactic one of normalisation, but there are other, more "semantic" instances, for instance set-theoretic models, or the ones given by homotopy-based ideas.
Hope this helps,
Meven LENNON-BERTRAND Postdoc – Computer Lab, University of Cambridge www.meven.ac
On 06/10/2023 17:11, mukesh tiwari
wrote:
Hi everyone,This question is just out of curiosity. I understand that Peirce's law is not provable in Coq (constructive logic) (I tried it in Coq and reached a point where it was impossible to construct an element of type Q from the context). I am wondering if there is a formal way to say what is and what is not provable in Coq. Best, Mukesh Require Import List Utf8. Import Notations. Lemma peirce_law : ∀ (P Q : Prop), ((P -> Q) -> P) -> P. Proof. refine (λ P Q f, f (λ p, _ )). (* There is no way I can construct an element of Q from the given context: P, Q: Prop f: (P → Q) → P p: P *)
- [Coq-Club] Formal Way to Express Provability in Coq, mukesh tiwari, 10/06/2023
- Re: [Coq-Club] Formal Way to Express Provability in Coq, Meven Lennon-Bertrand, 10/06/2023
- Re: [Coq-Club] Formal Way to Express Provability in Coq, Li-yao Xia, 10/06/2023
Archive powered by MHonArc 2.6.19+.