Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Intuition behind sig_forall_dec

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Intuition behind sig_forall_dec


Chronological Thread 
  • From: "Kyle Stemen" <ncyms8r3x2 AT snkmail.com>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] Intuition behind sig_forall_dec
  • Date: Tue, 13 Feb 2024 21:11:30 -0800
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=ncyms8r3x2 AT snkmail.com; spf=Pass smtp.mailfrom=ncyms8r3x2 AT snkmail.com; spf=None smtp.helo=postmaster AT sneak2.sneakemail.com
  • Ironport-data: A9a23:dGiE/aAYBz4JIBVW/9nnw5YqxClBgxIJ4kV8jS/XYbTApG920zFUm mMaC2CPbviOMWOmf9ogYNi38k0Ev5OBxtBmOVdlrnsFo1Bi+ZOUX4zBRqvTF3rPdZObFBoPA +E2MISowBUcFyeEzvuVGuG96yM6j8lkf5KkYMbcICd9WAR4fykojBNnioYRj5Vh6TSDK1rlV eja/YuHZjdJ5xYuajhIs/ja9Es21BjPkGpwUmIWNagjUGD2zCF94KI3fcmZM3b+S49IKe+2L 86rIGaRows1Vz90Yj+Uuu6Tnn8iGtY+DiDS4pZiYJVOtzAZzsAEPgnXA9JHAatfo23hc9mcU 7yhv7ToIesiFvWkdOjwz3C0usyxVEFL0OavHJSxjSCc50+BcHnpmOVzMF8NGrYj5dZ6GWF/t tVNfVjhbjjb7w636Km9R+Bv3II4KsTiP44as3BkizreCJ7KQ7idH+OWu5kBgWZ235wedRrdT 5JxhT5Hah/RZgYfIAwHUrolmuStj3j7NTZfrTp5oIJosjWNnV0tj9ABNvLkdf6BZtV1gH2ip 2WexnjiAzsaDN62nG/tHnWE2reRwXuqMG4IL5Wz8ecvi1mOzEQIGRgOXB26p+O4gwiwQbpix 1c84SwjpKtosletQ9D+UhixoXrCtRkZMzZNLwEkwAPKyajRuBaEOnY/aQV6d+wrrM8HBhV/g zdlgOjVLTBotbSUT1eU+bGVsS6+NEApwYkqOXRsoewtv4iLnW0jsi8jWOqPB0JcszEYMSr2z jmJ9m4lgbgajsMO3qS/u1vAhlpAR6QlrCZquW07vUr8v2uVgbJJgaT0sjA3Ct4cfe6koqGp5 iRspiRnxLlm4WuxvCKMWv4RO7qi+uyINjbR6XY2QMF+p2j8oS/7J9ANiN2bGKuPGppYEdMOS BOC0T69GLcIVJdXRf8uMtjZ5zoCksAM6ugJptiINoQSOskZmP6v9zBkaFTY1mvmnVM32aA5J ZqBd8uwRX0dDKF6yju9Tvsc1rkwrh3SNkuOLa0XOy+PiOLEDFbMEO9tGALXPogRsvjeyC2Lq Ik3Cid/40gFOAEISnOJodd7wJFjBSVTOK0aXOQNKLPTelo7Rz54YxITqJt4E7FYc21uvr+g1 hmAtoVwkjITXFWWeV/YWWMpc771Q5d0oFQyOCFmbx7i2GEubczrpO0Tfoc+N+tvvuFy7+9Gf 99cceW5A9NLVmvm/RYZZsLDt4BMTkmgqj+PGCuHWwIBWaBcaTbHwfLeRTu3xhIyVnK2keAcv 4yf0hjqRMtfZgZ6U+fTRvGd73Kwmnk/iuh3Q1f5Hd1IXEDK7oJRCjfQi8UvKJomMiTzxTq91 ieXDywHpOLLnZQHzdnRiY2ArKarC+FbHHcGL1LE7L2zCzbWzlCjzaBETuyMWzLXD0Hwx4mPe sRXyKvaHMAcvVMXrbd5Laln/Zg+6/TrubVe6AZuR1fPTlazD4JfMmu05tZOuoJN141ml1OPA GzXweZjOJKNJM/BO3wSLlB8bu28iNclqgOL5vExeEjH9Ct7+YScanprPj6OtTd8KYVkO4Z00 MYjv88rszaEsCQICerfrC5o9DWrFEciAoEHrZARBbH5hjU7km9iZYPuMQ6owZWtRegVDGwUD G61vpfSv5Vd2UvITFQrH1fvw+d2pMoDqTJK/nA4NnWLndvO3KIz7SJK4BAxaBln8Ttd4d0qO mFUKFBEf/SS3jZ3hfpsW3KnNBFBCSa4pG3w6Qotv0/IQ3a4UlfiKDUGBt+M20QC4UdwTyN+/ ozE7ErYCRPUJNrQ2Ak2Um5b883Td8R7rFD+qZr2Dva7EIkfShu7pK2XPE4jiQbtWOE1j235/ dhaxv56M/DHBHRBsp8AKteo0JoLQ0q5P01Ee/Zq+Z0JEUz6eD2f3TuvKVi7SvhSJs7loFOJN MhzGv1hDxiO9j6CjjQ+N54+J7VZmP0I5t1bXpjJIWUAkaWUrxs3kZb22xX9ulQWQIRVoZ5gE r/SSjOMKXzPpH12n2SWktJIFFDlavY5ZSr9/tuPzsM3K7w5vttRLH4CiomPgy3NMS9M3Q6lg wfYVqqHk81g0dtNmqXvIIViBiK1C8H5UfiUwT+3qPBLS83FCubVlgYvslK8FR9nDbgQfNVWl Lq2r9/82n3ejos2S2z0n5qgFbFDwMePANpsLcP8KUdFkRu4WMPD5wUJ/0a6I8drlOxxy9aGR QziTueNbv8QBslgwUNKZxhkExoyD7r9aoHir3ifq9WOEh0s7hzVHui49HPGbXBpSQFQAsfQU jTLgveJ4sxUiK9uBxVeXvFvPMJeEW/ZAKAjc4X8iCmcAmyWmWi9g7rFlyc7yDT1G3KBQdfb4 5XEe0DETy6Mmpr0lfNXj48jmScsLidNsbFlNAZVsdt7kCuzA2M6PPwQe8dOQI1dlivpkor0f nfRZW8lEj/wRilAbQ662tn4QwODHaYbD78V/NDyE5+8ME9axb9sAYeNMg975Xp/eWGl1+eqI NIT/3TxOl66xZQBqSP/IBCkqb8P+x8Y7itgFYPBfwjaGBAdBLwL0DpqGw8luenvDZTWjEuST YQqbTksfax4IHId1e57fX1QERAd+jjoyl3EqMtJLMn34+2m8QGL9BEz1ywfHFHOgATm6YPin U/KelY=
  • Ironport-hdrordr: A9a23:w+LBi6rNzAEROIYeiJyrvO0aV5oieYIsimQD101hICG9E/bo8/ xG+c5w6faaslYssR0b+OxofZPvfZq+z/JICOsqTNSftWDd0QPCQb2Kr7GM/9SKIVydygcy79 YET0EHMqyWMWRH
  • Ironport-phdr: A9a23:VlZAkR014Ic9ahfAsmDOmA4yDhhOgF0UFjAc5pdvsb9SaKPrp82kY BaOo6wzxw+RFcWDsrQY0bqQ6/ihEUU7or+/81k6M6ZwHycfjssXmwFySOWkMmbcaMDQUiohA c5ZX0Vk9XzoeWJcGcL5ekGA6ibqtW1aFRrwLxd6KfroEYDOkcu3y/qy+5rOaAlUmTaxe7x/I AuyoAnLq8UbgIRuJ6UtxhDUpndEZ/layXlnKF6NnBvw/Nu88IJm/y9Np/8v6slMXLn1cKg/U bFWFjMqPXwr6sb2rxfDVwyP5nUdUmUSjBVFBhXO4Q/5UJnsrCb0r/Jx1yaGM8L4S7A0Qimi4 LxwSBD0kicHNiU2/3/Rh8dtka9UuhOhpxh4w47JfIGYMed1c63Bcd8GQ2dKQ8BcXDFDDIyhd YsCF+UOPehaoIf9qVUArgawCxewC+3o0TJHnGP60Lcg3uk7DQ3L3gotFM8OvnTOq9X1Mb8fX e6wwqjIyTXMce5d1yrh6IfWdxAuv/eMUbxtesfWz0kgCwPEjlCLqYHmJTOY2OsMv3aA4up7U +KviGsnpBtwojir3Msjlo7JhocMx13C6C52z5o7K8eiR05nfd6rDoFQtyeCOoZ1Qs0uXWNlt SYkxrEbtpC2YjUGxIg7yhDfZPKKd4mF7xz+WeuQPTp1mX1odbyhihqs/0as1O/xW9e73ltWs CZIlMTHuH4K1xzW8MeHS/1981+v2DaO1ADT6/lELl4pmqraMZEt2LkwloAcsUjbHi/5gkH2g LWNdko4++in9eLnban4qZOENo90iwD+MrgrmsCmG+s4LhECX2ee+eum1b3j+Vf1T6lNjv0zi qXZsZbaJd4apqGjGQNV3Jwj5hCiBDmlyNQVhXgKIV1fdB+IjoXlIUzCLfD8APulnlihnzRmy vbbNbD/BpXNM2PDkKv/crZn9kBcyQsyws5H6p5IDLwKPej9VVXrtNPCCx80Kwy0zPjjCNV6z o4eQmSPDbGDP6PRr1OE/PkvI++Sa4APuzbyNf0l6OTvjX89g1MSYa6p3Z4PZHC5GPRpPVmZb GLtj9oOC2sHsQszQPb3hFCCVTNffWu+Uq0/6z0jDYKpF4bDRoSjgLyb2ye7G4VbZmZaBVGMF HfobIaJW+0CZSOdPMNsiScEVb6iS48kzx6utQv6x6B7IerT/y0UrZTj28Nt6O3JiR4y7SB0D 9ia02yVUm14hnkISCMu3KBjvUx9zU+O3rR/g/xBDNBc+/dJUhohOpPH1Ox7C9XyWhrbcduTS VamRM+mATArQd4rzd8OeRU1J9L3hRfamiGuHrU9lrqRBZVy/LiP8WL2IpM36GfC2eEak1QjT 80FfTmgjb967FjJXJ6Tu16flKOjdKBa1ynIojTQhVGStV1VBVYjGZ7OWmoSMxO+RbXR40rDS +TrErE7Kk5aztbELKJWa9rvhFEARfH5Od2YbXji03yoC0OuwbWBJJHvZ31bxD/UXU4PggUIr WzdJVIWHSGipmvfCHplEle8K1j0/7xGoWigBlQx0xnMakRg07Sv/RtAg/eNTuhDxOkU4g86r TZxFVe5mdnRDonIvBJvKYNbZ951+1JbzSTZugh6a4SnNLxnj0UCfh5fpEXj3hYtTJ5GnMEpo XYjzQ40IqWduL9YXxWf2524erjeK22puQuqd7aTwVbGltCf5qYI7v087VTlpgCgUEQ4oT1h1 JFO3n2Q64+vbkJaWI/tUksx6xlxpq3LKig76YTO0HRwMK6y+jbc0tMtDeEhx16uZdBaeK+DE QbzFYUdCa3MYKQskEmsdUIeZ/AI3LUyPMavdv/A06mufa5hkD+gkWVb8dVlyEvfkkg0AuXM3 psD37SZxl7ZC3Gg0hH475GxwNwUNlRwViKlxCPpBZBcfPh3dIcPUiK1JtGvg855n9jrUmJZ8 1iqAxUH3tWocFycdQ+Yv0UY2EIJrHiggSb9wSZzlmRjqKGO2Tee2b/yLjIcPG1OTWhmy1zrJ MLn6rJSFFjtdAUvmBa/sAz8zLlev/RldHmJaVxOfC3/LmUkWay1/OnnAYYH+NYjtiNZV/65a FaRR+vmohcU5CjkGnNX2DExczzCVozRpxVhkyrdKX9yqCGcYsRs3VLE48SaQ/dN3z0ATS0+i D/NB1H6McP7tdmTkp7CtKi5WQfDHtVVejju1tOa7zvhzXZsAhi2nvT1kdriWQQ3yi700dB2W D6A8kq6Ptetjvnrd7s7LgFhHxfk5tB/G51in4dV5tlYwnUcipiPvDIGnWr1LdRHyPf7ZXsJS yQMxo2d6wzk1Ut/a3ORktylECnDhJI8Np/jPjNFv0B1p9pHA6qV8rFeyC58o17j6BnUfeA4h TAFj/0n9H8dhegN/gsr1CSURL4ITiw6dWThkQqF69emoeBZfmGqJPK231t7hoC7V6HYihpaW 3Pwe5NkFih1pJYaUhqEwDjo54fodcOFJ9QYpxiPww2bn7J9M5Qyk/MLgWxsPme37hhHg6Yry Bdp25+9po2OLW5gqbm4DhBvPTrwf8oP+zvpgPUWjoOM0ouoBJkkBiQTUc6iU6ezCDxL/6eCV U7GAHgmp3ycA7aaAQKP9BIssSfUC57yf3jFP38UxNY4AgKbKUVcjQUdXTF8lZk8XlejwMirG KtgzhYW4FOw6h5Fy+YzcgL6Tn+avwCwLDE9VJmYKhNSqABE/Ubcd8KEvKp1GGlD85utoRboS CTTbhlUDWwPRk2PBkzydrio697a9uGEB+24Z/LQaLSKoOZaWr+G35Wqmodh+j+NMI2IMBwAR 7Uj3VFfWHliB8nDsy4JRiUUzWTWacOSpxq58yxz6Mu49bWjWQ7i45eOF6oHMdhr/EPT4+/LP OqRiSBlbDdAg81QgyOWjuFCjRhL13E9ElvlWa4NviPMUq/Kz6peDhpALjh2KNMN9KUkmA9EJ c/cjNrxkL9+lP88TVlfBjmD0omkY9IHJ2alORbJHkGOYf6ALizO2JHtOrPmYaZWj+Bdthn2s jGeWRyGXHzLh3zyWhajPPsZxjmcJwBbsZqhfwxFEm7uRdG8LAa9PdZ0gDg/wLlyjXTPfz15U 3A0YwZGqbue6jldi/N0Fjla73ZrGuKDnj6Q8+jSLpt+WRpDGSJ5nuEApm88xrJW4SRNRfgzk yzX/IYGS7SOie+MzzNmVFxFrTMZ3OpjUm15P6bc/5hEH33D+UBUhVg=
  • Ironport-sdr: 65cc4b91_gMr0/qxMsIaV7fxpEUMY5/XoPEI8afQ2Achk6pFbNpaRZFL t1NHpKNLMdnTbMnmYYnGOx+7FEkYeN+WbpcRcGQ==

That's the limited principle of omniscience. The Coquelicot paper explains how it's used for classical real analysis.

On Tue, Feb 13, 2024 at 7:02 AM mukesh tiwari mukeshtiwari.iiitm-at-gmail.com |coq-club/Example Allow| <dsd13c3nm2whb1t AT sneakemail.com> wrote:
Hi everyone, 

I was looking into Coq standard library and saw this axioms sig_forall_dec [1] by a mere accident. I am trying to understand the intuition behind this axiom but my programming intuition simply cannot get it. I admit it is a classical axiom but I am finding it very hard to wrap my head around it.  


The way I see *sig_forall_dec* is a function that takes a function P --which returns Prop for every natural number-- and a function f ((forall n, {P n} + {~P n})) —which takes a natural number return P n or ~P n-- and it returns a proof object {n | ~P n} or returns a function {forall n, P n}. This whole things, to me, appears like a magic because we are turning a function *f* into proof object ({n | ~P n}) or a function for which P holds for every natural number ({forall n, P n}). I will appreciate if someone can shed a light on the intuition behind this magic. I presume it is used in reasoning of real numbers so what kind of proofs about real numbers require this axioms? 


Axiom sig_forall_dec
  : forall (P : nat -> Prop),
    (forall n, {P n} + {~P n})
    -> {n | ~P n} + {forall n, P n}.

Best, 
Mukesh




Archive powered by MHonArc 2.6.19+.

Top of Page