coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Arthur Azevedo de Amorim <arthur.aa AT gmail.com>
- To: coq-club AT inria.fr
- Subject: Re: [Coq-Club] on coinductive extensionality
- Date: Wed, 13 Mar 2024 09:44:05 -0400
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=arthur.aa AT gmail.com; spf=Pass smtp.mailfrom=arthur.aa AT gmail.com; spf=None smtp.helo=postmaster AT mail-pg1-f169.google.com
- Ironport-data: A9a23:VTs/Vqzs+eG8w8oNEhV6t+cszSrEfRIJ4+MujC+fZmQN5Upmgn1D0 SoCHzzEY6PVNVJBSaklN87jtFRAiSLmvtJnSFZvqyAyFy0U88PPWNjCIxr5biqbf8GfFh43v 8sXZIecJ8k5F3PW9h6nbbXr9CF33/zWHbOtULDJMSl4SAYMpEvN8f5Gs7dRbtlA2IjhWmthw O/PnvAzGGNJ+hYvOTke5fvbox9m4P776D5G4wVibP1FtgWEmyEfB8lBdIi8fiDyKmV2Nr7jF ryblNlV3UuAokxzUov9+lrfWhdXKlIHFVHW0hK6Y4D73l4Y4HZaPp8TbJI0cV1QhyiCg+d/w dBMsY3YYQoyN8UgosxEO/VjO384ZfIuFIPveyDl7ZTIlhaeKRMA/t03ZK0IFd1AkgpIKToWn RAoAGhlRgyOgeuw3IW6RoFE7ij0BJSD0Cs34xmM/BmBZRoUacirr5biube06AwNavVmRp4yU Sa2hQ1HN3wsazUXUrse5QlXcO2A3hETeBUAwL6ZSDZeD8E+A2Wd3ZC0WOc5dOBmSu0FtU+6h lyWx1/6OUsYPvHc7AuFzzWV07qncSPTAOr+FZW9//9uxUWcnykdUUNHE1S8pva9hwi1XNc3x 048oHJ/6/hvshbyE5+kAUzQTH2s5nbwX/JZCfE69RvLw6P87AOQB2xCRTlEADAjnJZrG2B1i QXSxbsFAxRis+e/dkzGxIyKkmuKNxMXF0NfSwMbGF5tD97L+9xq1k2eEL6PCpWdhdrsXDr03 jqitzk7n7xVjMgR1qz980qvvt63jp3ATwpw/gqOG2z8sFI/a4miaIilr1Pc6J6sMbp1UHHRl 3Emu/bO1NsNNsuPngHOZdQNIfaQsqPt3CLnvXZjGJwo9jKI8nGlfJxN7DwWGKuPGpZUEdMOS B+D0T699KNu0G2Wgbibir9d5uwvxKnkUMzqD7XaN4QfJJd2cwCD8WdlYkv4M4HRfKoEwPtX1 XSzKJnE4ZMm5UJPkmDeqwA1j+VD+8zG7TmPLa0XNjz+uVZkWFabSK0eLHyFZf0j4aWPrW39q okGb5HUm08BC7OuP0E7FLL/y3hafRDX4rim+6RqmhKre1EO9JwJUqOPm+lwJNINc1p9zb+Ur yHVtrBkJKrX3iCecVrbNBiPmZvgWpFwqX9zPConez6VN4sLMO6SAFMkX8JvJ9EPrbQ9pdYtF qVtU5vaXpxnFG+ckxxDNsaVkWCXXE/37e54F3H4OGRXkl8Jb1Chx+IIiSO2rXZXVXLq7ZBiy 1BivyuCKac+q81ZJJ6+QJqSI5mZ5yNA8A6rdxKQeYEBS1am64VwNS36g9k+JsxGe12JxSKX2 0zSSV0UrPXE6d19utTYp7G2n6HwGctHH21eAzb665SyPnLk5WaN+9JLf9uJWjH/b1nK3pueS 99b9NzGC81frm1269J9N51J0ZMB48Deou4G7wZ8Q1TOQVeZKpJhBXik28NwmLVH7eJbs1HuW 2ak2NpTCZOWMuzLTX8TIwsEaLyY9Pc2wzP909U8EH/Y1gRWooWVcBx1FAaerQBgN51JCZMB7 cZ9nd8J+iq9pwEPMN3bvhtL9m+JEGMMY58nur4eHoXvrAghkXNGXrDxFQ7054OpefxXE0x3P AKRurXOt45cymXGbXA3M3rHhshZpJYWvSF13E0wHEuIlvXFl80I8kVoqxpvdTtszzJDz+5XE UpoPRcsJayxohFZtPIaVGWoQwx8FBmV/3Lq8GQwlUrbclKJU1LcJ2hsKMeP+0Ekq1hnRAZ5x 43B6mjZUmfNRvrTjw8SQk9ursLxQeNhrjPinN+VJOXbPp0YTwe8vIqQSzsmlx/VD/k1pnX7n shx3eMpaaTEJS8a+KI6LI+B1IUvchOPJU0cYPRt4JI2GXr4fRes0wOvMGG0QNtGfNbRwH+7C utvB8NBbAu/3yCwtQImBbYADrt3vfwx7v8AR+/PCUsZlYCA9xxFnYn19CfsoEMKGfBVjtcbO IfdUxmgA16gryJYtEGVpfYVJ1fiR8cPYTPN+dyc8cILMskmm/5te0Rj6YmElSyZHyU/9i3Fo T6ZQbHdytFj7oFen4HMNKFnLCfsIPPRUNW4yiyCg+5sX/jub/iX7xg0r2P5NTt4JbESAtR7t Yqcue7NgX/qguwEbHD7qbKgSY9y+sSAbMhGOJnWLV5bvxe4du3C3h8hw128eLt1yI5zx8//X AapStqCRfhMUfdn+XBlQSx/EREcNqfJUpndtR6N9/SiNjVN0CjsDs+WynvyXGQKKg4KI8LfD yH3idaP5/dZjph9OxsfI8FMBbpDeVrGZZp7U9j9qzPCAnKauQ6AsOG6lD4LyzLCOl+bGunUv LPHQRnfckypmafqldt2ja17jic1Pl1c39YiW107+sFnrQy6AEotD/UvAb9fBr56yiXNhYzFP hfTZ24cOADBdDVjcySkxu/8Xw2aV9c8Cv2gKhMHp0qrOjqLXqWeC75c9wBl0Xd8Wh3n6MqFc dg+2HnBDiKd86FTZ9Q4x6KE2L985/bg2Hg311j3kJXyDzYgELw67iFdMzQXZxPXMfPmtRvtH nc0d1BmUUvgaE/WEORcQVB3NiwdngvSy2QPUX/S7vfZ4omV9bgVgrm3ceT+yaYKY8k2NaYDD yG/DXeE52eNnGcfo+01stYumrV5Eu+PAtP8FqL4WAkOhOul3wzL5S/ZcfYnF6nOOTKzEm8xU hGp6nk6QVyKcQVfgePHjwoO/J11XzQHCDShYMsTY9PZuURR8jQbU0HCIMHHxVXYpK3qvkEeS zAXBKpUi0PDryPq/FGSqdxCzmFqwqgt+b3sXSUhT5e0mRCpIIOY+HaNzGliv+9sHLZ4Kkm4u UpfPxjROG5qY89X4z3ZoQ==
- Ironport-hdrordr: A9a23:rcCqxaxAlcZmP8+ctvWuKrPwG71zdoMgy1knxilNoERuA6ilfr OV7ZMmPH7P+U0ssR4b+exoVJPsfZqYz+8R3WBzB8bZYOCFghrKEGgK1+KLqFfd8m/Fh4xgPM xbHJSWfeeQMbEMt6jHCWeDf+rIi+P3lpxAzd2utkuFYzsaE51d0w==
- Ironport-phdr: A9a23:3kAuzR2ZbryBDZWismDOaw4yDhhOgF0UFjAc5pdvsb9SaKPrp82kY BaOo6owxwKTFcWDsrQY0bqQ6/ihEUU7or+/81k6M6ZwHycfjssXmwFySOWkMmbcaMDQUiohA c5ZX0Vk9XzoeWJcGcL5ekGA6ibqtW1aFRrwLxd6KfroEYDOkcu3y/qy+5rOaAlUmTaxe7x/I AuyoAnLtMQbgYRuJ6YvxhDUpndEZ/layXlnKF6NnBvw/Nu88IJm/y9Np/8v6slMXLn1cKg/U bFWFjMqPXwr6sb2rxfDVwyP5nUdUmUSjBVFBhXO4Q/5UJnsrCb0r/Jx1yaGM8L4S7A0Qimi4 LxwSBD0kicHNiU2/3/Rh8dtka9UuhOhpxh4w47JfIGYMed1c63Bcd8GQ2dKQ8BcXDFDDIyhd YsCF+UOPehaoIf9qVUArgawCxewC+70zz9EmmX70Lcm3+g9EwzL2hErEdIUsHTTqdX4LLsfU fqpzKnI0DXDde5d1Cv86YfWbBAuv+yDXbVtesXM10YkCh/IjlCXqYz/PjOV0/kGvm+B4Op6S eKvi3Mnqxtrrje13MghkYbJhocPxVDF8SV12po6Jdq9SENiZ9OvDZRfuT2AOYRsXsMiX39nu Dw8yrAetpC3YTYGxZc5yhPBd/GLb4uF7g7nWeieIDp1mHJodrK/iRiy70SuxPPwW9eq3FpWs iZIkMfBu3QR2hHS6MWKTv1w9Vqi1zaXzw3f9P1ILEQumafYK5Mt2KA8mocTvEjZAyP7mUH7g amLfUg6/uio9v/nYqn4qZ+GKoF0iwD/Pbo2l8CjB+kzLxIAUHKB+eum0b3u5U35T6tOjv0xi qTZtYrVJcUfpqKgGw9V3Zsv5w+xDzu70dkVmWMLLF1CeBKAgIjpP0/BLOrkAve4hlSgiDZrx /bYMb39GpjBMGTPnbP7cbt+60NQ0hQ/wc1f6p5OF70MIfb+Vlf0tNPCDx85NwK0w/zgCNV4z o4RQ3iPArOZMKPPq1+E/PggLPOXaY8avTbyMfkl5/r0gXAlnl8deLGl3Z0MZ3+gBPRpP12ZY WbwgtcGCWoGoxIyTPb2h12aTT5Te3GyUrog6TE8EYKqFJvMRoSwgLOaxyq7BZ1XZmVeCl+WC 3vodoOEW+0NaC2IOMNhnCYEBvCdTNoq0gjrvwvnwZJmKPDV82sWr8HNzt9wssTJiREv73RdH cmD3m2KB2151koNQCU32egrqFZhykqZl6Fxq/NdHN1XofhOV1FpZtbn0+VmBoWqCUr6ddCTR QP+Kj3HKTQ4T9ZrhsQLf144AdKpyBbKwyutBbYR0b2NHp09tKzGjDDqP8go7XHA2eE6ikU+B NNVPDivnLJ/6hKVDofhnECQlqLsfqMZj2bW7GnW9WOVpwlDVRJoF6DMXHQRfEzT+N3j+kPfV fmnAJwoNwJAzYiJLa4ZIsbxgwBgQ/HucM/bf3r3m2q0AkOQwaiQaYPxZ2gH9CDUCUxBiw9Ku Hjfa1l4CSCmrGbTSjdpEDoDemvK9u9z4DO+R04wlUSRalF5kqCy8VgTjOCdTPUa2vQFvj0go nN6BgT12dWeENeGqwd7GccUKdog/FdK037YvA1hL9ShKa5lnFsXbwVwuQvnyRx2DoxKlcVio mktyUJ+LqeR0VUJcD39v9i4M6fLKnTouhmmQ6HT01Dalt2R/+ZH6fg1rUnioBD8DlAroD1s1 9hY1WfZ542fVlJDF8KsFBxuql4j+eCJB0t1r5nZ3nBtL6Su5zrL2tZzQfAg1g7lZdBUdqWNC A71FcQeQcmoMu0j3VazPXdmdKhf8rA5O8S+er6Iwqmuaaxphi6mkH4B6YlV3UeF9i46QenNl cVgobnQzk6cWjHwgU30+MnthYBZf3cbF0KwzCHlAMhaYag4Ls4bTGypJcOw3NB3gZXgDmVZ+ FCUDFQDwMa1eBCWYjQRxCVo3F8M6TyikCq8lXlvli0x67CY12rIyvjjcxwOPihKQnNjhBHiO 9r8g9cfVUmuJw8n8XntrU/g26hGvuJ2JkHcRE5Je279KGQqXqart7WEatJC89ty6XQRALn6O wnHDOej8lMTyGv7EnFbxSwnej3P2N2xhBF8hG+HbT5yoHffZcBs1ELa7d3YS+RW22lOTy15h D/LQ1mkaoPxrJPEytGZ6734DjzwBfgxOWHxwIiNtTW2/zhvCBy7xbWon8H/VBI92mn93sVrU iPBqFD9ZJPq3uK0K7ECHAEgCVni5s59Aow7nJE3gcRa0GIGhoiPu3MOuWj2ONRfn6n5aTBeI FxDi86Q+wXj1EB5eziA3Z75S2/by8JJaNyzY2dQ0SU4pZMvau/c/PlPmi17pUC9pATabK1mn zsT/vAp7WYTn+ADvAd+hjXYGL0ZGlNUeDD9jxndpc7rt71ZPSz8FNr4nFo7h92qC6uO5x1RS GqsMIl3Bjd+t41+KA6eiyC1s9C8PoOMMpRL8UfI2xbY07oLdNRrzaFM3HQ/fzq65CxAqaZzj AQyj8/k+tHfcSM1uvr+WEYQNyWpNZ1NvGux3OAOxoDOmNr3VpR5RmdUBt2xEbTxQWhU7bO+Z 2PsWHU9sivJRuaZRFXCrh8g9zWWTdiqLy3FfSFJi4w9G1/NYhQY2llcXS1mzMdmTUbzlZCnK AEhoWlPgzyw4hpUlrAyb0i5AjqZ/V34LG9zEcfXLQIKvFsbuQGIYYrHv7g1R2YBr9WgtFDfc DXFIV4TXCdSAArcQAmyW9vmrc/J9+zSbganB93JZ7jG6elXVvPSgImqzpMj5TGHcMOGInhlC fQ/nEtFR3FwXcrDyX0JTGQMmiTBYtT+xl/08zBrrs257PXgWR7+rYqJBbxINNxz+hewya6dP u+UjSx9JH5WzJQJjXPPzbEe2hYVhUQMP3G1Fq8csCfWUK/KsqpeDhpecywqccURsfN60Q5KN srWzNjy0/8wj/I4DUtESU20msytYp9vQSn1P1fGCUCXcbWecGeTkoenPOXmEOAW1bsF5HjS8 X6BHkTuPyqOjWzsXhGra6RXiT2DeQZZs8e7ewpsDm7qSJTnbAe6OZl5l25To/V8i3XUOGobK TU5fVlKq+ja5DlEguhlXWVIxnVgJOiA3S2e6qOLT/Re+esuGSlym+9AtT4izKBJ6ShfWPFvs C7br9oru17/1+fWlGshXx1JpTJGwomMuA8xXMeRvokFUnHC8hUX6GyWABlfvNppBOrkvKVIw 8TOnqb+QN+t293R9MoYQcPTLZDeWJLEGRXsET/QSgACSGzzXYk+r0lUkfXX7nLM65Zj9Mmql 50JRbtWElcyE6FCYnk=
- Ironport-sdr: 65f1adb3_PminGs9n17K/ojkBqGGEp+ZZ5002UZKy/nZyyPZfAZdx40Y 48u3uggkTBOAcRuOMCbwjhy/xLZWVt+3FUmF78g==
Hi Burak,
The property you stated is contradictory. The issue is that the it
predicate forces the first argument to be finite, whereas ct can hold
for some infinite coseqs. See the following attached file for a proof.
Best wishes,
On Wed, Mar 13, 2024 at 8:15 AM Burak Ekici <ekcburak AT hotmail.com> wrote:
>
> Dear all,
>
> I have a pair of predicates — one inductively and the other coinductively
> defined as follows:
>
> CoInductive ct {A: Type}: coseq A -> list A -> Prop :=
> | co_nil : forall ys, ct conil ys
> | co_incl: forall x xs ys, List.In x ys -> ct xs ys -> ct (cocons x xs)
> ys.
>
> Inductive it {A: Type}: coseq A -> list A -> Prop :=
> | ci_nil : forall ys, it conil ys
> | ci_incl: forall x xs ys, List.In x ys -> it xs ys -> it (cocons x xs)
> ys.
>
> Would assuming an axiom like
>
> Axiom ext: forall {A: Type} xs ys, ct xs ys -> @it A xs ys.
>
> introduce any unsoundness?
>
> Thank you so much.
>
> Best,
>
> ―
>
> Burak
--
Arthur Azevedo de Amorim
Require Import Coq.Lists.List. Import ListNotations. Set Implicit Arguments. CoInductive coseq (A : Type) : Type := | conil : coseq A | cocons : A -> coseq A -> coseq A. Arguments conil {A}. CoInductive ct {A: Type}: coseq A -> list A -> Prop := | co_nil : forall ys, ct conil ys | co_incl: forall x xs ys, List.In x ys -> ct xs ys -> ct (cocons x xs) ys. Inductive it {A: Type}: coseq A -> list A -> Prop := | ci_nil : forall ys, it conil ys | ci_incl: forall x xs ys, List.In x ys -> it xs ys -> it (cocons x xs) ys. Axiom ext: forall {A: Type} xs ys, ct xs ys -> @it A xs ys. Lemma coseq_eq {A : Type} (xs : coseq A) : xs = match xs with conil => conil | cocons x xs => cocons x xs end. Proof. now destruct xs. Qed. CoFixpoint const {A : Type} (x : A) : coseq A := cocons x (const x). Lemma const_eq {A : Type} (x : A) : const x = cocons x (const x). Proof. now rewrite (coseq_eq (const x)) at 1. Qed. Lemma in_singleton {A : Type} (x : A) : List.In x [x]. Proof. simpl. eauto. Qed. Lemma ct_singleton {A : Type} (x : A) : ct (const x) [x]. Proof. cofix H. rewrite const_eq. apply co_incl; trivial. apply in_singleton. Qed. Fixpoint coseq_of_list {A : Type} (xs : list A) : coseq A := match xs with | [] => conil | x :: xs => cocons x (coseq_of_list xs) end. Lemma it_finite {A : Type} (xs : coseq A) ys : it xs ys -> exists xs', xs = coseq_of_list xs'. Proof. intros H. induction H as [|x xs ys Hx _ [xs' IH]]. - now exists nil. - exists (x :: xs'). simpl. now rewrite <- IH. Qed. Lemma contra : False. Proof. assert (exists xs, const tt = coseq_of_list xs) as [xs H]. { eapply it_finite. apply ext. apply ct_singleton. } induction xs as [|[] xs IH]. - rewrite const_eq in H. now simpl in H. - rewrite const_eq in H. simpl in H. apply IH. congruence. Qed.
- [Coq-Club] on coinductive extensionality, Burak Ekici, 03/13/2024
- Re: [Coq-Club] on coinductive extensionality, Meven Lennon-Bertrand, 03/13/2024
- Re: [Coq-Club] on coinductive extensionality, Arthur Azevedo de Amorim, 03/13/2024
Archive powered by MHonArc 2.6.19+.