Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] review of Kerjean's “Functorial Differential” at TLLA 2024 — [HoTT] Postdoc Category Theory

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] review of Kerjean's “Functorial Differential” at TLLA 2024 — [HoTT] Postdoc Category Theory


Chronological Thread 
  • From: Christopher Mary <admin AT AnthropLOGIC.onmicrosoft.com>
  • To: "nicola.gambino AT manchester.ac.uk" <nicola.gambino AT manchester.ac.uk>, "kerjean AT lipn.fr" <kerjean AT lipn.fr>, "homotopytypetheory AT googlegroups.com" <homotopytypetheory AT googlegroups.com>, "coq-club AT inria.fr" <coq-club AT inria.fr>
  • Subject: Re: [Coq-Club] review of Kerjean's “Functorial Differential” at TLLA 2024 — [HoTT] Postdoc Category Theory
  • Date: Tue, 9 Jul 2024 04:37:25 +0000
  • Accept-language: en-US
  • Arc-authentication-results: i=1; mx.microsoft.com 1; spf=pass smtp.mailfrom=anthroplogic.onmicrosoft.com; dmarc=pass action=none header.from=anthroplogic.onmicrosoft.com; dkim=pass header.d=anthroplogic.onmicrosoft.com; arc=none
  • Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-AntiSpam-MessageData-ChunkCount:X-MS-Exchange-AntiSpam-MessageData-0:X-MS-Exchange-AntiSpam-MessageData-1; bh=6GUp6f6dFV2OmBpDESjbUU1MA+QeXp5C9Qovb0tyOmg=; b=oALOyxiuBO0iaEbpqrHRaFMLyk/7B4G2rnQs1TrzYKVIuLzUgf6mSnyyJlUnzmsv7D8LtBtVJ3o3z9Zj9P3WDH35Bf340GkIf4WCyChMK7QSg3GtFTVhUW2CSBM+EYv1NXG2ZllSkrO+ybYGAoVdQPs5f1OonkJbQtyn0zBJXcD1hsEWunsvWJRpZph1pxbKaYH+6HkOLeTMFlFaarWisW+mTL4UhcRbkn5J+zTOUYF7DKF65fN9CzcikuaILfwhDtR2w7gduMKGHj7Cb1TIXej+v0mhO42oHaEsU5Ezo1bgdHWfM+PL/nHwsbUldZQmGa10YFYhRF9v69sVI0SOXQ==
  • Arc-seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=mZEI8LpgvhQDNHNkAY8HG6Gf6knwTV35WnEw0cbXRehte1b+Kb36pnOFhuC4/tXGBFE1leNXhN2/HL1DTzUrRcbZhml/KhxaJbEO4Od5d7vMjyTOnq7OxzzfPS6gV9G0bP/FI+OfirqKkyUcfv2ENWqc0kTKYp/G+4YZHZ8FzS1pSKjUZkqMeihCUCOVt6I7nc8y5QaK5AlpSJv+g8p70pbkBaT0NlbrEbTRILlj/2oBMsWMbiH2m0vHToQLzqmufCCGR8hz8Yg3IpydxT9PHMN/E4/9N9jgqRwz+xxX7yWdzJcc81jQpkqBgA5qNkrhhrypd6kp+f35olmNbcNsAg==
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=admin AT AnthropLOGIC.onmicrosoft.com; spf=Pass smtp.mailfrom=admin AT anthroplogic.onmicrosoft.com; spf=Pass smtp.helo=postmaster AT NAM11-DM6-obe.outbound.protection.outlook.com
  • Ironport-data: A9a23:aIeZ66zRC9wLRAtYKEF6t+fNzSrEfRIJ4+MujC+fZmUNrF6WrkVSm mJJCz2DO/uPMDf2ctEjPoS/80pX7ZaGmtc2GQs5rVhgHilAwSbnLYTAfx2oZ0t+DeWaERk5t 51GAjXkBJppJpMJjk71atANlVEliefSAOCU5NfsYkhZXRVjRDoqlSVtkus4hp8AqdWiCmthg /uryyHkEAHjg28c3l48sfrZ9Esw5KWq4lv0g3RnDRx1lA+G/5UqJMlHTU2BByOQapVZGOe8W 9HCwNmRlo8O10pF5nuNy94XQ2VSKlLgFVDmZkl+B8BOtiN/Shkaic7XAhazhXB/0F1ll/gpo DlEWAfZpQ0BZsUgk8xFO/VU/r0X0QSrN9YrLFDm2fF/wXEqfFO3mvVUUQISILQ2wfxNGzlg+ fgKAxISO0Xra+KemNpXS8FKr+F6dYzHGd1avXttizbEEfwhXJbPBb3Q4sNV1ysxgcYIGuvCY 80eanxkaxGojx9nZg9RUcph2r3y3T+mK2UwRFG9/cLb50DawAlw1pDkNsbVYNuSQcJan03eo WTD/m/jBQodOsDZwj2Amp6prr6Ww3yhAt9IfFG+3tBAkV6t/V0tMSNISEaWi8eZrxGsB80Kf iT4/QJ19vJuqyRHVOLVVBqh5XWAoxQ0QMtVC+R86QeXy6OS7RzxO4QfZjtIadhjuMpoQzUvj waOmYmwXWQpt6CJQ3WA8LvStSm1JSUeMW4FY2kDUBcB5N7g5oo0i3ojU+qPDobu193PRHLU3 gmklzIEne09gcoZ/IekqAWvby2XmrDFSQs85wPyV22j7x9kaIPNW2BOwQiEhRqnBNbIJmRtr EQ5d96iAPfi5KxheQSISeQJWb2sufCMNWSFhlg1RsF5sTOw53SkYIZcpilkI1tkOdoFfjmvZ 1LPvQRW59lYO37CgU5Lj2CZW55CIUvITI6NuhXogjxmP8EZmOivoX0GWKJo9zqx+HXAaIlmU XthTe6iDGwBFYNsxyesSuEW3NcDn39nlDOPGciilU34itJygUJ5r59VYDNiichpvcu5TPn9r ogObKNmNj0DDrCiPXOPqeb/03hVcyNlXMGeRzNrmh6reVE8RD5J5w75xLIqYYt+mKpJ3uzP5 GnVZ6Or4AuXuJEzEi3TMioLQOq3A/5X9CtnVQRyZg3A8yZ4Pu6SAFI3LMdfkU8Pr7E7kZaZj pAtJ629Pxi4Ym+eoGVCMMGk/NAKmdbCrVvmAhdJqQMXJ/ZILzElMPe+Fuc23HBWX3rlhth0u LC6yALQTLwKQgkoXo6ca+uiwxn19TIRkf57FRmAaNRCWlTewK4zIQzIj9gzP54tLzfHzWCkz Aq4O0oTitTMhI4Xy+P3o564gb2nKMZEJXoCLVLnte63EQL44lucxZRxVbfUXDLFC0Lx1qaQR cRU6PDeGvcBplFBtttjL5s67ZkDwsbl/eJGxztCDX+QSUqZDIp9EyPXwehOqax/6btLsiSmW k+024d7OJfYHOjHAVIuNA4eQeDb7s4tmx7W9uUTImzhwhNO7J6rcB51BAadrwB7IJ9eEpIX8 c14tOE4swWA2wcXaPCYhSVqxkGwB30nUYB8k7oFAYXu2zEZ+nsbbbPyUibJsYyyMfNSOUwXI xiRtqrIp5JY4mHgK3MTN3z87dBxtKQ0miJh7QE9fgySu9//mPUI8gVb8m03QiRr3xx36b9PF VYxBXJlB5el3mlOv9dCbVCOCgsaJRy++27N8XUrulDdbXGVUj3qEDVgF8eLpFsU4kBNTAh9p bu48lvoYRzuXcP23xYxZ3JbluzefYRx2DHvyMGDNOaZLqY+egvg0/OPZ3JXih7JAvERpUzgp MtNxdsoeYjAbAMsn5wnAdO40ZAVGUmIC05cTc48/4cPN3DWIwu26GO0M0rrJt5HfMKS+2DpF cV/e8BFDUy/8A2srTkrI7EGDJEpvfwu5fsEIqjKI0xfuZShjzNZirDi3Qmgu30OXPNVjtcbF ozKUjCJT0i8pCdxwjfWjc9mPmGYX4E1VDfk1rrozNRTRoMxju58VGoTjJ6mtGqxGyl69Uu2u AjjWffn/9Z6w94xo7q2Q7RxPCTqG9bdT+/SzRuSte5JZtbxMcvjkQMZh13kHgZON4sqRNVFu uWRgeHzwX/6ku46Y0LBl7mFMpt518G4ce5UE8DwdV1xvy+JXu3y6BoipUG8D7F0k+1m28r2f DvgNfOMduMUVexNm1xTSSxVSCgGB4rNM6zPmCKarta3MCY77zDpFt2dyCLWXTlpTRNQY5zaI S3oismq/eFd/dhtBgdbJvRIAK1YAV7EWIkmfdvLsjKdX3airQKEs4THiBB6tC3CNV+VGp3c/ 6DDfwXPLkWumaDXzeN2t555kQ0XAU1c38gxXBM50Pxnhw+qCFUpKbwmDqwHLZVPgwrw/YreW AjdSEcDUgLGQiVjXTPwxP/BTzWvLLUCFfmhLwN44n7OTTm9Ab2xJYdI9wBixixTUSTixuT2E uMu0CT8ETbpy644WNtJwOKwhNpm4fboxngo30TZuO6qCjY8BYQ67lBQLDBvZwfmTf6UzF7qI FIrT19qWEu4EE79Mfhxck5vRS02gmnd8CUKXwyunvDkpISp/M9RwqbeOsby8IE5QuYkGbosf U7zFkyxuz24+3pKtaUQ7odjxec+DP+QBcG1IZPyXQBYzen69m0jONhEhiYVCt0r/AlECV7Gi z2w+D4ECV+YLFxKkqijoenTF0mdjlpQZ90IsOL+mdMCuToQ6oGAPjSPkkf8I5y2rLX/tUJFR jtUdFyWv1CdqDrjo395q+gfoVuER8oWEBEolwg2G4jqnE7EpHB1TdhcP4MSjrq9M0GoAq1dc rqRydIl/IWoXyjJ2AbhndwDZaNgoatHEQMG41Ms1Aw+DcO+jesXbP7gQotXjW8ubdVecFId0 tfUc3j4JiP99w5XWz1uocrKTJJgrL+/0trULbn54d9y4teh73TUp3J0DcRCtuibuWVtmLtvt Hns3Ms=
  • Ironport-hdrordr: A9a23:ajljEaz0xYJbW3cZA/PeKrPxuOskLtp133Aq2lEZdPULSKGlfp GV9sjziyWetN9IYgBHpTnyAtj4fZq6z+893WBxB8bVYOCCggeVxe5ZnO/fKlHbehEWldQtnZ uIEZIOb+EYZGIS5amV3ODSKadC/DDzytHMuQ6o9QYOcegFUcFdxjY8LjzePlx9RQFAC5Z8Po Gb/NB7qz2pfmlSRtinB1EeNtKz7eHjpdbDW1orFhQn4A6BgXeD87jhCSWV2R8YTndm3aoiy2 7YiAb0j5/T/s1TiyWsm1M73a4m1ucJ+eEzRfBkTfJlagkEvzzYK7iJnYfy/wzd7tvfqmrC2+ O82yvId/4DkE85OFvF6icFkjOQrQrH5xLZuCWlqGqmrsrjSD0gDc1dwYpfbxvC8kIl+Mpxya RRwguixu9q5D777VfADuLzJmNXv1vxpWBnnf8YjnRZX4dbYLhNrZYH9EcQFJsbBir15I0uDe ErVajnlYFrWELfa2qcsnhkwdSqUHh2FhCaQlIassjQ1zRNhnh2w0YR2cRalHYd85A2TYVC+o 3/Q9BVvaALStVTYbN2Be8HT8fyAmvRQQjUOGbXOljjHLFvAQO8l3c22sRF2AiHQu138HJpou W8bLpxjx9MR37T
  • Ironport-phdr: A9a23:F75SSRK0gdZYyMPG7NmcuMJoWUAX0o4c3iYr45Yqw4hDbr6kt8y7e hCEvbM33BSZBs2bs6sC17CH9fi4GCQp2tWojjMrSN92a1c9k8IYnggtUoauKHbQC7rUVRE8B 9lIT1R//nu2YgB/Ecf6YEDO8DXptWZBUhrwOhBoKevrB4Xck9q41/yo+53Ufg5EmCexbal9I Ri4sQndrNcajIhtJqsyxBbCv39Ed/hLyW9yKl+fgRLx6t2s8JJ/9ihbpu4s+dNHXajmcKs0S qBVAi4hP24p+sPgqAPNTRGI5nsSU2UWlgRHDg3Y5xzkXZn/rzX3uPNl1CaVIcP5Q7Y0WS+/7 6hwUx/nlD0HNz8i/27JjMF7kb9Wrwigpxx7xI7UfZ2VOf9jda7TYd8WWWxMVdtWWCJcH4O8d JMPAPQdMuZEoYf9oF4OogG/BQmqGejjzjBFi3vz0aA8zu8vExzJ3BY4EtwOrnrascn1OqkRX ++pw6fHwi7Ob+9N1jvh9ITEbgwtrPOKULltccTR004vFwbdg1iOqYzlJTKV1v8Rs2ic9+pgV fygi3Q6oA92uDev3MctgZTOi40P11/E8CR5wIAuKNCkTk57fd6kEIFXtyGCMYV4W8IsTWJ2t Sogzb0Gv5u7fCkWx5Q9wB7fcPuHc4aU4h75SOmRJjJ4iWtjdbmiiBm87VKuxffgVsmozllKt CxFn8HIu30OyhHe9MmKR+Zy80u9xTuC2APe5+VELE01laTXNZEvzqM+mJcOvknOHTL6lVjyg aOKdksp+uam5ubpbLjmoJKXKoF6igb7Mqs0m8y/B/w1MggUUGif4+i8z6Hs/UznT7VMkvI5j LHVsJ/bJcQHpq65HhRa3pw/5Ba4CjeqyM4YkmcJIV9EeB+LlY7pNE/SIPzgEPiwmVWskDNrx vDcILLhHJTNIWbNkbf6Z7p9709cyAwwzdxH4pJbFK8OIO7uWk/prtDXEhg5Mwmsz+b8CNVyz JkeVnyXAq+eMaPSt0OI6vgzLOmLYY8Yviv2Jfs95/P2gnI1hUURcbS10ZYVcny0AOpqLkuDb XbxntsNDX8GshQ/QeD2hlCPVCNfa2qpUK894zw2C4erDYneSo2ohbGNwSO2E5tLbW1YDlCMD Gzod5maVPcWdSySI85gnSIcWLS9TYIqyAuguxXgy7V9K+rZ4i0Yuozn1Nhy/+DdjQ0/+ztpA 8iAym2DQWZ6k2IRSz8xx69wv1ZxylCe0ahkmPNYEsFT5/VUXQsgLZ7c1et6C8zsVQ3dYteJS VGmQtO8DTE2U9Ix39sOY0F6G9WhlBzMwy2qA7oNm7yKApw77L7c0mD+Ksph0XrKybUtgls8T sdRK2GriLRz+xXPC4LVi0mZkryldaUY3C7D7meDym+OsVlCXwFtVKXFXHYfa1DMotT/+kPCT 6WuCbM/MgtFzs6CJapKZcHzgVVBQvfjPdXebH6rm2e3HhaIwb2MbJbwd2oB2yXdDVAIkwYI8 nmeLwgxGj+ho37CDDxpDV/jflvg8fNip3OjUk800waKYlV92Lqy4x4ZnOCTS/cO3r0foyohs DV1HFOl393MEdaApgxhfL9dYdwn+ltH23jZ5ERBOcnqKaFpgVoXNQt+uknv0RJfD4xGmsgnt 28n1kx7IuSF0xkJIzWZ1pf0M/vYI2z4/RaoQ6vf3Fre3c2K971J4f9+tla1+EnjFUc48Xhu1 fFR0mOaoJvQRkJGUp/rUEs+8TB+pqncJCcnscecn31rNK6otSfTx8MxCfclxxG6bv9QN6SLE AL9CcoHH9PoI+sv0RD9bhUBO/xV7L8oLtura/uL37S6FOlnmz2igGtd551lyQSH8C8qDqaC1 JEchvqcwwGvVjHmjV7nvNq90dRPYihXFW6iwwDlApRQb+t8Z9BYJ32pJpicxs9/nILqQ35V7 haGDkkXkJugdR+TaXTU2xFQz0MPhVuIuAD+yDpxkjozqbGY0jCIyOPnIklUclVXTXVv2A+/a bO/iMoXCRT5B+BIvB6s5EKhgrNeuLw6NG7LB0FBYynxKWhmFKq2rLuLJcBVu9szqSsCduO6b BiBT6Ll5QMA2nbqE25fwhgScS2qoJLhuztVqUnbK3B2rXHDftp3ywuZ79vZFrZKxjRTfCBjk nHMA0Skedyg/NGajZDG5+myUmOnfpRVbSnxypuEsyS67ittBxi+lOq0gdrpDU4x1iqon8JyW 3DwpQ3nKpLuy7z8Me9jeRxwA0Tg7sNhBoxkuq0ZochJnFQ/2NCS93dBlnrvO9JG3664dGAKW TMA39/S5k7ixVFnKXWKgYn+Ux1x2+NHYN+3KiMT0yM5tIVRDbuMqadDhW1zq0a5qgTYZb58m C0cwL0g8ixSheZBowcrwiiHZ9JaVUBFISzhkQiJ5NGive1WYmioa725yEt5m5ioEriDpghWX HuxdI0lGGd86cB2MVSE13OWiMmscdXVbNQ7nxuIkw3Hl8xyB7Ma0P0MgCtsI2XmunM5jeU8i F0m3J23upSGN3Q45LiwUXs6fnX+Y8Ie/C2ojL4Lwp7QhtjwWM87QXNSBMO7KJDgWCgfvvnmK QuURTg1q3PAXKHaARfa80B+6XTGD5GsMXiTYngf19RrAheHdyk9yEgZWis3mpkhG0Wk3svkJ Q1w6jUQ4HbxrAdM0OVwMx7wU2yZowGtazwuT4OYIgYQ5QZHrRSwU4TW/qdoEidU84f05gWBL 22dTy1OEWETXVSgIH/CFf+p49zB+PKfHe2wM73FZrDE+ok8H7+YgJmo1IVh5TOFMM6Ca2JjA /MM0U1GRXllGs7dll3jUgQvnjnWJ46erRa4oWhsq9ynte/sQETp7JeODL1bNZNu/Qq3iOGNL bzYiCF8IDdenpQCoB2AgLET2V8Uoyhoazm3FqwEsiHMR+TXnKpWBAQccCR9KI1D6Kd00gRWO MHdg8/4zfYk1rhsUwgDDwa63JjxPaloaym0LxvfCVyONaiaKDGD2Mzxba6mCPVRgOhSqxysq GOeGk7nMC6EkmqMNVjnOuVNgSeHeR1G7d3lNE81Vi65FomgM0XjY7oVxXUszLY5h23HLzsZO Dl4KAZWq6GIqDhfmrN5EnBA6XxsKa+FnTyY5q/WMMVz07MjDyJqmuZd+Hl/xaFS6XQOTfBwm S36p9hyo0uhiu2IxTtsFh1IrzdAnoWQukt+f67e89MTPBSMtAJI9miWBxkQ8pFsBtjuvYhZz MTPjqXrLDBN8tmS+s0ZBsPOL9mAPmZnOh3sUm2xbkNNXXugMmfRgFZYmfeZ+yiOr5Q0nZPrn YIHVr5RUFFmXuNfEEluG8YOZYtmRj5x26DOl9YGvDDtyXuZDNUfpJ3MUeieROniOCrMx6cRf AMGmPv5NdhBatW9ihYkMh8i292XU0vIAYIR+ms4NlBy+AMVtyEgKw97k0P9NlHwujlKTabyx lhuzVIiKeU1qGW1uwtxegWM/G1o1xBu0dT932LLeWaofv7pBNNYV3Ks5Rp2bsOeIU49bBXsz xZtbG6WHusI3bU8LTs52kiA6NNOAaAOF6QcOU1JnKjFaalwigYM8n3/lx0AuLKga9MqlRN0I 8Sl9ysSgls6PtBpffeCL/IRlgoCwf/X9i6wiLJryVdHdR9UqTGcJHZT6kJQbuF0dW31pKQp4 AiG0VOvYUA0XuEx6rJv/0I5YKGbyj74lqVEMga3PvCeKKWQvy7Bk9SJSxU+zBFAm05A9Llwm cAtFijcH1go16eUHg8VONDqDyhwNpMX2F2NOCGEvKPK3I5/OJi7GqbwV+iSua0Ig0WiWgE0A 4AL6cdHFZ6ptSOQZcvqN78Kzxwx6R+jeA3DVawWPkjRy3Fe+5n3xYQ/xYRHIzABHWhxeT664 LravE5igfaOWss3fmZPXoYAMSFTOoXykCpYsnJcSTivh75BjlHasHmm/H+WVWGkPL8BLL+Oa BhhCc+742A6+qmy0hvM94nGYnr9LZJks8PO7uUTo9CGDelVRP9zqRS5+cEQSnq0XmrICdPwK YL3btxmZNDxC3CSW1qjiygyV8P2M9emaK+OhADjX4FPt4eHmjskMIXuc1NWUwc1vOwF6K9mM EcbZIEnZBfzqwkkH4qWBV7Bl/mLHSOqIzYQSORDx+KnYbAR1zArcuKx1HonSNc90vWz9kkOA poNi1uNoJTrL5kbWi/1FHtHfgzJridsjGltONE5xeInyQ/Ju10RYHibMfZkY2tes5QgFEufd D9oX3EgSQbW3u+hqka8mqof9CxHk5NI3P1Z5TLg64THbmvkWbT3+8mN9Xt6K4Bg++oobMTiO pfU6MuYx2SACsGW6krcDkvYX7JbgoQCfXgeGaEQ3zljYYtf5cJA8RZjD59iYeAQTvFq/vfzN nJlFXBAlyZBDtHZhWVQjLvkg+mI0UvAFfZqeB0c7scYi4NEAXcvO3EQ+Pf4BdeRyz7MS3BVc l0atV0evVtZxIEsJru3sNKQFM0ejGMPxpA8GirTSMsy/gOiGDjP2Ar2FK36wefxhVoAnrWxi 5EaQEAtU0EFnrQPzxJ6Ju0vcPse5taS4G3PKBmy+WvpzKHOzLx54MvId0f/FK7imkvXFCoa/ HwfX4hUz3/DU58VllghAE7KjHNlBdn/P2rbuXkjzYkvGKSkX8e2wVpjtWwBWyqhD9tGDadhr U7TXzpmJZusrce8U329amZW5J2HrE9dl0psOGi+z59dINtK+TkCQH5EpjDP5bOP
  • Ironport-sdr: 668cbe99_QEEob74JmOeQzmtM5YGw2f3Do97dlinQBmEhSA18dJmrq+Q GpGhSGb1Ddx1tIKeWxBre+ohzIdQsLG2s45fiRA==
  • Msip_labels:

Capo,

https://hal.science/hal-04292862

instead of a one-liner reject « not sufficiently clear » as you did to my
HOTT-2023 paper, here is my thorough review of Marie Kerjean's “Functorial
Models of Differential Linear Logic” at TLLA 2024, although their Proposition
3 (functorial differentiation is a left-adjoint in a chirality) is still "not
sufficiently clear" and probably false, lol

The logic of polynomials (a.k.a. differential linear logic) is often
expressed via an algebraic "deriving" transformation d: k[V] → k[V] ⊗ V
(meaning approximately d: f(x) ↦ f'(x) ⊗ dx) with the usual rules (formulated
in the notations for a monad k[-] which is also a ⊗-monoid) when applied to
constant (scalar in k) polynomials, identity (linear) polynomials, product
(multiplication) of polynomials, or substitution of polynomials (chain rule).‎

Its more logical dual operation d: !V ⊗ V → !V instead pre-compose any f: !V
→ W, understood as the underlying relation/profunctor of a polynomial which
stores the coefficients at each of the "monomials" (xy, xx, y, xyz, ...) in
!V, such to produce, at any (outer/extensional) parameter point a: 1 → !V,
another derived relation D_a f ≔ f∘(a⊗d): V → W which now only uses linear
monomials (x, y, z, ...) in V.

Essentially, Kerjean's "Functorial Models of Differential Linear Logic"
exploits an overlooked choice in this formulation: should the deriving
transformation be formulated as d: V → !V (derivation at 0, intentionally
together with other translation/codiagonal operations), or as d: !V ⊗ V → !V
(derivation anywhere at any intentional variable), or operationally
extensionally as a functor D(a: I → V |f: !V → W): V → W, defined on the
co-slice (pointed objects) of the co-Kleisli category of the comonad !, where
its functoriality becomes the "chain rule" of differentiation?

Clearly, tautologically, the intentional and extensional formulations should
be equivalent when everything is "well-pointed", and this is the content of
Kerjean paper until page 15 where they improvise an attempt to relate this
functorial differentiation D to the notion of chirality (*-autonomy) for
linear-non-linear adjunctions: they claim in Proposition 3 that the
differentiation functor D becomes some left-adjoint in a new framework of a
generalized chirality produced by any *-autonomous differential category...
But their Proposition 3, which is essential to justify this improvised forced
relevance of "chirality" for this paper, is far from "clearly demonstrated"
and is most possibly incorrect.‎

Nevertheless, this operational extensional formulation of differentiation,
reminds of Kosta Dosen's cut-elimination-in-categories techniques, and could
be a good candidate for the computer implementation of the (substructural)
logic of differentiation (which is not available via the alternative of
cartesian closed differential categories) of analytic functors (or "stable"
or "flat" functor). But there is a difference between a polynomial formulated
above as an analytic functor and a polynomial formulated as a polynomial
functor (B ∈ Set, E: B → Set) here:

https://github.com/1337777/cartier/blob/master/cartierSolution15.lp

This is a draft implementation of polynomial functors as bicomodules in a
double category of categories, functors, cofunctors and profunctors. Here the
underlying profunctors store the exponents X^(E[b]) of each summand/position
b of the polynomial, instead of storing the aggregated coefficients C[e]⋅X^e
at each exponent e of the polynomial as is the situation above for analytic
functors.‎ ‎ (This file also contains a draft implementation of
inductively-constructed topological covering sieves as profunctors dependent
over the hom-profunctors, solving Olivia Caramello's question.)

Differentiation of polynomial functors has been studied (for example
(∂List)(X) ≔ Σ(n:N)(h:[n]), [n]\{h} → X = (List(X))^2) in the framework of
cartesian differential categories. Differentiation of analytic (or "flat")
functors has been studied (for example dF(-, YZ) ≔ F(-, XYZ) for the
coefficient at the monomial YZ when derived along X) in the substructural
logic of differential categories with exponential comonad !, the free
(symmetric) monoidal category monad/comonad in the bicategory of profunctors.
None of these earlier studies would qualify as a solution in this sense:‎

Could there exists a hybrid implementation setup with the categorial algebra
of polynomial functors and the differential linear logic of analytic
functors? In simple words: grouping summands 1 + X + X ≃ 1 + 2⋅X in a
polynomial is highly questionable...‎

Here is a copy of this review on re365.net < https://dailyReviews.link > the
free open source Microsoft 365 app, developed by a community <
https://meetup.com/dubai-ai > of 2,000+ contributors, to Schedule reviews
with authors and businesses, with the end-goal to co-author or by-product an
AI interface for their papers and apps API; it is some kind of tiktok-style
calendar overlay of arxiv, producthunt, researchseminars (and soon
semanticscholar) for users (and editors/marketers) to schedule reviews with
VIP authors/developers:

https://re365.net/doi/?q=63D9544F-3905-425B-80F2-EA116A6CDC08
https://re365.net/doi/?q=Kerjean+Functorial+Models+of+Differential+Linear+Logic
or non-permanent <
https://anthroplogic.sharepoint.com/:w:/s/cycle1/EU9U2WMFOVtCgPLqEWps3AgB6qbLLUoVUJVB2YfA1aB2-A
>






Archive powered by MHonArc 2.6.19+.

Top of Page