Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] review of Max Zeuner defending “Constructive Algebraic Geometry”

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] review of Max Zeuner defending “Constructive Algebraic Geometry”


Chronological Thread 
  • From: Théo Zimmermann <theo.zimmermann AT telecom-paris.fr>
  • To: coq-club AT inria.fr, Christopher Mary <admin AT AnthropLOGIC.onmicrosoft.com>
  • Subject: Re: [Coq-Club] review of Max Zeuner defending “Constructive Algebraic Geometry”
  • Date: Mon, 7 Oct 2024 16:41:31 +0200
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=theo.zimmermann AT telecom-paris.fr; spf=Pass smtp.mailfrom=theo.zimmermann AT telecom-paris.fr; spf=None smtp.helo=postmaster AT zproxy1.enst.fr
  • Dkim-filter: OpenDKIM Filter v2.10.3 zproxy1.enst.fr 77D06C0D47
  • Ironport-data: A9a23:rgWta6x5InZeGValut16t+fyxyrEfRIJ4+MujC+fZmUNrF6WrkVVn WZLXmzTb/+KajH8e4t3YNy3oUgH657XztRrGwQ4r1hgHilAwSbnLYTAfx2oZ0t+DeWaERk5t 51GAjXkBJppJpMJjk71atANlVEliefSAOCU5NfsYkhZXRVjRDoqlSVtkus4hp8AqdWiCmthg /uryyHkEAHjgmcc3l48sfrZ9Eo35Kuq4Vv0g3RnDRx1lA+G/5UqJMlHTU2BByOQapVZGOe8W 9HCwNmRlo8O10pF5nuNy94XQ2VSKlLgFVDmZkl+B8BOtiN/Shkaic7XAhazhXB/0F1ll/gpo DlEWAfZpQ0BZsUgk8xFO/VU/r0X0QSrN9YrLFDm2fF/wXEqfFPh5tZONGh1M7FB69toPFBH+ P1HL28kO0Xra+KemNpXS8F+nt4kPNiyeo4ZoW0mwyux4fQOGMucBfybuZkCmm1q3qiiHt6GD yYdQSZvYROGcRxKP1oNDZs4ms+0i33yeDpd7Uqcv6sspWbJpOB0+OG9b4aJIY3XH625mG7Ht Gbc3HTFCC0CD4S26x+s+FWXv+3AyHaTtIU6UefQGuRRqFaU3ykYDAAcfUCqpOGwzE+4QdNWb UIOkhfCtoAg7FasXsikGRC+u2LCsAR0t8dsLtDWITqlksL8izt1zEBdJtLsQIVOWBMeLdDr6 rOIoz8tLS53qrqFWCvb+7GPsXW8I0D56IPEiTAsFWM4DxvL+enfTS4jiv5/Haq4hdrwXCn52 TGR6iYk71nWpdBezL21pDgrnBr1zqUkjWcJCsH/Qm+h4wh+Ycu9bpap8h7V956s6Wpfokap5 BA5piRV0AzC4VxhWsBArCXh0YxFP8q4DQA=
  • Ironport-hdrordr: A9a23:VBz3dKCoRi7+43HlHemE55DYdb4zR+YMi2TDpHoBMSC9Ffbo6/ xG/c5rqCMd6l4qNE3I/OruBEDuewK/yXcY2/hrAV7mZnidhILKFvAG0WKB+UyCJ8SWzIc0vs 0MEshD4Z/LfCFHZK3BkW6F+rgbsb+6GeyT9IPjJqhWIz1XVw==
  • Ironport-phdr: A9a23:2syAYxH7Z9Y5fSpZWvPGdp1Gf+1FhN3EVzX9CrIZgr5DOp6u447ld BSGo6k21BmTB9SQtKIMotGVmp6jcFRD26rJiGoFfp1IWk1NouQttCtkPvS4D1bmJuXhdS0wE ZcKflZk+3amLRodQ56mNBXdrXKo8DEdBAj0OxZrKeTpAI7SiNm82/yv95HJbAhFiiaxbalsI BmoqQjducsbjIh/Iast1xXFpWdFdOtRyW50P1yfmAry6Nmt95B56SRQvPwh989EUarkeqkzU KJVAjc7PW0r/cPnrRbMQxeB6XsaSWUWjwFHAxPZ4xHgX5f+qTX1u+xg0ySHJ8L2TLQ0WTO/7 6d3TRLjlSkKOyIl/GzRl8d9ir9QrhC8qBxl24PaY4+bO/Vwca3AY90aS2pPUcRNWCJOGY68c 5AAAvAdMepEsYXwpV0Dpga+Cwm2A+PvzydFiGH23aog1OQqDALJ3A0lH9ILrnvUttD1O70UU eCz0aLFyinDb/NI1jf68oTJcxEhofSJXb1ua8rRzFMgFwXDjliLtYzqITeV2foRvGic6upsT PqvhHQ9qwFwuTij3MksipPQi48T11vL+jl3zpwvKt2kVE50f8SkEJ1IuiyYNIZ4TN0vTmFqt Son1LALupG2cSsKxpkj2RPSZfOKfoiG7x/hSuqcIDV1iXJ7dbywiRi//0atx/DyW8Sq0VtHq DdOnNfLtnAIzRPT686HR+Ny/kegxTaP1x3T5fpeLU8okqrbLoYtzaI3lpUOr0vMBij2mEvug 6CKcUUk/PWn6/n7bbX6vJOcMpJ7hhnjPas0m8y/BeQ5MhIQUGiF+OSzyrPi/VbjTLVOj/02l KrZvIjAJcsFqKO0Ag9Y3pwl6xmhEzer1skTk3ofLF9dZR6KgYrkN0vTLP38AvqzmUqgnC11y /zYIrHtGovBIWLfnLrueLtw6FBTxxYvwd1a+55ZD6wNLfDyV0L0qNPXEAQ2MwKxzuvjBtVxy IMTVGeRDqKdKqzfs1qF6+AxLOSMeoAYviv2JuYh5/7zln85hUESfbO005sWaXG3AOxrL1mfb HHxmNkOC30KsRA7TOHyiF2NTzpTZ3GqUqM9/jE7EoWmDIjDR4ywmrCOwiG7HoZKZmxcBFCMC 2/kd4SCW/gSdCKfOtJtnzIGWLS7VoMs0R6juBXkx7Z9MObY5DEUuYrm1Ndv5u3TkR8y9SZzD 8SYy2yNU2F0kX0PRzMs3aF/oEl9ylKd3qhihvxXD9pT5/VSXwcmK5Hcy/J1BMz1WgLEZ9uJU EypQs+nATEqVN4xzcUOb157G9q5lh/DxTalA6cJl7yXA5w56r/Q02DrJ8lh03bGyLUhj14+T 8RTMm2mn7dz+BTXB47UiEqUjL2qdKQZ3C7V7miP12uOvEdCUA5xS6rJR34fZlGF5ej+s0jFV vqlDaktGgpH08+LbKVQLpXCjU9HX+vkINTTeSqUkn2hTUKByraNaqLDfXkdxiLFLG8rsitV+ nCDNAMkATymrX6YBztrQwHBeUTppNV+KXTzfE4xygyQakRn0fLh5h4YgrqOSvYW06gBsSEng yl5GFu22NeTE9OaphEncr8KMoB120tOyW+M7181BZenNa033jb2EixytkLqjVBsD5lY1NItp zUsxRZzLqSR1BVAcSmZ1Nb+IO6fMXH8qTaobaOewVTCyJCO4K5a9PQ1rBPxvQSsG1An+nNh+ 8VY13aX4ZCPFAMIUIm3XFxkvwNiqeTiazImr5jRyWUqNKC1tjHY3Nd8GOsozVCyftJaPbmBH Qn0O9EXA8WlL+lvg1GzbwlCMvoBvLUsMZaAcP2LkLWuIP4mnD+iijFf55th10uX6ydmYvzQx ZEV0qje0w2cS3Hylj9Nq+jRnoZJLXEXF2u7k23/AZJJI7d1dsANAHuvJMu+wpN/gYTsUjhW7 gzrAVROw8KvdReICj61lQRNyUQap2Cmkiqk3nR1lT8utK+WwC3JxazrahMGPmdBQGQqg03rJ MC4iNUTXU7gaAZM9lPt+Ub3wO5JpaF6InPWSEFOVzT7K2xpVa71rrOYYtUJ5olp+SRbXeKgY EyLH6bnqkh/sWurFG9fyTYnMjCy78yiwFoj2T7bdjAp9iKKHKM4jQ3S79HdW/NLiz8PRS0iz CLSGkD5Jd6iu9Odi5bEtOm6EWOnTJxaNyfxnubi/GO243NnBRqnkrW9gNriREIm0SL8kctrU CDFthP1ZI/Dy6m+POlgewxwDUX98Ix0AMst9+l4zIFVwnUcipiPqDAbkWr0d8da3Kfzdn8EQ zgj39PR7QPi3Qh7J2iI3MT3TD/Op6kpL8n/aWQQ1CUn6slMA6rB971Ikxx+pV+gpB7Qa/xw9 tsE4cMn82VSw+QAuQ53iz6YHqhXB05TeyrlixWP6dm66qRRfmemN7aqhgJymtWoDbfKpQ85O j6xZpcvGmli78B6PUjJ2Xv1wp3pfNTbatdWrhSOkgyGgfIdJJ8ql/UMjDZqIiqk5iJjkr9ny 0Yoh8vi9IGcTgcltLq0GBtZKiH4a4sI9zfhgLwf1sea0oazH4lwTzACXZ/mV/WtQ3oZsfXqM RrLESVp8yzEX+OOQUnFrh089yGqcdjjLXycKXgHwM83QRCcIBYamwUIRHAgmZV/EAm2xcvne UM/5zYL51e+pAEfr4AgfxT5TGrbox+lLzkuT53KZgZW4wYE9UbQNMGE6+t1GQlE85mspwuIb 3SSfQVTS28TEB/hZRirLvy16N/M/vLNTPa+IvyIc7SLrOFEUv6Ow7qz349r9DGJc92GJHh5S fMhkBkmPzgxC4HSnDMBTDYSniTGYpuApRuyzSZwq9i27PXhXA+8rZvKEbZZNs9jvgynmarWf fDFnz53cHwLs/FEjW+N0rUU20Qezj1jZyX4W6pVrjbDFerRgvMFVkVELXoiaI0Sqf5hu2sFc c/D1IGvjuYh3KBrUwUeDgTvyJv7N5YGa2ClaAGeXxnNbeXaY2eNmpqnJvjlLN8YxORM6U/q4 W7CQRG9ZmbYzGHnBUr9Y7FFy3jBY1RfoN3vK00yTzGyEJS8LEfhaJgs1VhUifU1ni2YbzZEa GoiLRsf9ebI43EC0KdzECsYtCQtaOCAn2zxA/DwDJEQvLMrBy11k7gf+3Em0/5P6yoCQvVpm SzUp9ooole8k+DJxCA1GBxJ4i1Ggo6GpyAAce3Q64VAVHDY/RkM8XTYChIEoMFgA8HuvKYYw 8bGlab6IjNPu9zO+s5UC8/RIcOBeH0vVHihUCbTFxcARCW3OHv3lVRHl+GDrzuYqIMm7Jb22 dIPRrJdSF0pB6YaB0BiT7lgaN98WjIpl6LejdZdvCHh6kCAGIMA+MqdDqH3Y72nMjuSgLhaa gFdxLr5Kd5WLYjnwwl4bVI8mo3WGk3WVNQLoyt7bwZyrl8elRo2BmA1xU/hbRugpXEJEvvh1 AI2hww4c+Uo8Tr25l4xIHLWqS89m0403M3smzGKNjDrZvTVP8keG2/vuk49P4muCR5ydhG3l Fd4OS3sVapLiKtxLCZmjhTA/5VVU605L+UMcFobwveZYO8t2FJXp3C8xENJ0uDCDINriAogd ZPER5NoyRp5a84kfOrdIrFViFZK1PrmVsqAyu01zQQZIgMV+XmTY2gGoh5QXlHJDzal+uFn7 gnHgzJZeXNKWeB4+5pX
  • Ironport-sdr: 6703f327_f8G92zN8IrAc/6DuSkMZ0kirxWmQTrAnzC2YYov2R2cxYVG RoEE/FS8yE9Eve/a346QIPJl4Fnhr+14Hru9WzQ==

Dear Christopher Mary,

The message you sent on Friday was in violation of the Coq Code of Conduct [1].

This is your second warning for a Code of Conduct violation in a 3-month period. It seems to indicate that you have not understood or not accounted for our previous warning.

Therefore, this second warning comes with a 6-month temporary ban from all official Coq spaces both online (Coq-Club mailing list, Zulip, Discourse, Coq GitHub organization) and offline (CoqPL and Coq workshop), starting today. We count on you to abide by this ban and to change your behavior when the ban is over. If it doesn't happen, we may be forced to issue a permanent ban.

If it is not completely clear to you why your message was in violation of the Code of Conduct or how you can change your behavior, you are free to write to us to coq-conduct AT inria.fr (the ban does not apply there).

Best regards,
The Coq Code of Conduct enforcement team

[1]: https://github.com/coq/coq/blob/master/CODE_OF_CONDUCT.md

On 04/10/2024 14:37, Christopher Mary wrote:
Nicolas “pain au chocolat” Tabareau,

[ERRATA]
https://github.com/1337777/cartier/blob/master/cartierSolution16.lp

En effet, merci de ton aide pour l’errata, mais conformément à l’article 6 de
la loi 2004-575, j’ai un droit de réponse à ton désaveu public… Sonya Massey
would say “I rebuke you too”, lol #MeToo

-----

Review of Max Zeuner defending “Constructive Algebraic Geometry”.

MAX [1] shows an equivalence between functorial schemes X and
locally-ringed-lattice schemes Y, approximately:

LRDL^op( X ⇒ Spec , Y ) ≅ ( X ⇒ LRDL^op( Spec( – ), Y ) )

Where ( X ⇒ X' ) ∶= Fun( CommRing , Set )( X , X' ) are abbreviations in the
category of functors from commutative rings to sets, where LRDL^op is the
opposite of the category of “locally” ringed distributive lattices, where
Spec: Fun( CommRing^op, LRDL^op ) is the functor sending a commutative ring
to (the underlying set of) its Zarisky lattice, and where “locally” for a
lattice Y with sheaf of rings O_Y means the existence of an operation

D: (u : Y) → O_Y (u) → u↓Y

where D_u(f) is intended to be the open in the slice lattice under u where
the function f: O_Y (u) is invertible.

… But this won’t work; I judge Max’s defense as a “thèse à crédit”.

A prerequisite is a computational logic (type theory) for categories,
presheaves, sites and locally ringed sites. This requirement is especially
manifest for the etale topology where the “objects” of the site are etale
morphisms (adjoint pairs of cocontinuous/continuous functors between sites).
Note that the existing attempts at “2-dimensional type theory” as in Marcelo
Fiore [2] have a flaw in that they try to implement the interchange law
directly (α ∘_0 β) ∘_1 (γ ∘_0 δ) = (α ∘_1 γ) ∘_0 (β ∘_1 δ) when in reality
it hides subtle Yoneda-actions related to the fact that the profunctor
C[F-,_] is a distinct computer type than the hom-profunctor C[-,_] of the
category C applied to outer objects of the form F- ...

A draft solution has been implemented in

https://github.com/1337777/cartier/blob/master/cartierSolution16.lp

as a natural transformation from the structure sheaf to the sieves-classifier
(“subobject classifier” for the small topos of the scheme Y)

D: O_Y → Ω

where D_u(f) is intended to be the SIEVE in Ω(u) under u of all opens where
the function f: O_Y (u) is invertible. This requires the presence of a
classifier/universe Ω for sieves, but because of Kosta Dosen
cut-elimination-in-categories techniques, it is not necessary to work
“internally” as in Thierry Coquand [3] to get a logic which computes. Now a
sieve S under the object U can be realized as a (“dependent”) profunctor in
groupoids over the category of elements of U; that is the sieves need not be
(-1)-truncated subobjects as in Nicolas Tabareau [4, definition 5.5], because
checking instead that the cohomology differential is 0 will be an alternative
way to check for compatibility of a family of sections of the sheaf
(alternative to “internally” ensuring this compatibility)... Moreover, this
profunctor framework will allow a hybrid definition of the site and
functor-of-points approaches to schemes. But all this computational logic
foundations are still far from your typical birational algebraic geometry
conference [5], which usually start with blowing up schemes (projective Proj
bundles) and doing cases analyses with Cartier divisors...

It is a strange coincidence that the formula D: O_Y→Ω resembles the formula
d: O_Y→Ω for Kahler differentials, but the open problem of discovering a
(graded) differential linear logic formulation for the algebraic-geometry’s
cohomology differentials will be investigated instead in an upcoming review
via the profunctorial semantics of linear logic in the context of sieves as
profunctors… It will also be reviewed how outrageous is Ehrhard’s [6, section
3.1.1, page 44] definition of the composition of polynomials by the use of
differentials instead of by elementary concepts,

g ∘ f = Σ_(i: 0..n) (1/i!) g⋅d’^i⋅f^(⊗i)⋅c^i

and how this motivates the search of a hybrid framework⋅ combining polynomial
functors (good algebra) “depending” on analytic functors (good logic) …

[1] Max Zeuner “Univalent Foundations of Constructive Algebraic Geometry”
(defending Oct 4th 2024)
[2] Marcelo Fiore “A type theory for cartesian closed bicategories”
[3] Thierry Coquand “A foundation for synthetic algebraic geometry”
[4] Nicolas Tabareau “Lawvere-Tierney sheafification in homotopy type theory”
[5] SCMS 上海数学中心 “Workshop on Birational Geometry - September 2024”
[6] Thomas Ehrhard “An introduction to differential linear logic: proof-nets,
models and antiderivatives”

-----

A copy of this review is at https://dailyReviews.link (by re365.net open
source Microsoft 365 app), the tiktok-style calendar overlay for all your
research communications!




Archive powered by MHonArc 2.6.19+.

Top of Page