Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Proving the pairing axiom

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Proving the pairing axiom


Chronological Thread 
  • From: "D. Ben Knoble" <ben.knoble AT gmail.com>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] Proving the pairing axiom
  • Date: Sun, 29 Dec 2024 14:47:07 -0500
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=ben.knoble AT gmail.com; spf=Pass smtp.mailfrom=ben.knoble AT gmail.com; spf=None smtp.helo=postmaster AT mail-ed1-f49.google.com
  • Ironport-data: A9a23:P49rJ6OnocGJ/jbvrR0Gk8FynXyQoLVcMsEvi/4bfWQNrUoh0GcBy GcZWW+EOKvZM2emetoiPo7g80xV6MeAndE1S3M5pCpnJ55ogZqcVI7Bdi8cHAvLc5adFBo/h yk6QoOdRCzhZiaE/n9BCpC48T8mk/vgqoPUUIbsIjp2SRJvVBAvgBdin/9RqoNziLBVOSvU0 T/Ji5OZYQXNNwJcaDpOt/vZ8kI35pwehRtB1rAATaAT1LPhvyJNZH4vDfnZB2f1RIBSAtm7S 47rpF1u1j6xE78FU7tJo56jGqE4aua60Tum1hK6b5Ofbi1q/UTe5EqU2M00Mi+7gx3R9zx4J U4kWZaYEW/FNYWU8AgRvoUx/4iT8sSq9ZeeSUVTv/B/wGXjflzXzdp0A3sHAotJ4+ttBTt39 /4XfWVlghCr34pawZq+Q+how8kvdYzlYNJZtXZnwjXUS/0hRPgvQY2QvY4ejGp23JgeW6qPD yYaQWIHgBDoaRBJfFQRD5g6kc+ng3D+d3tTr1f9Sa8fujCOllEpgOazWDbTUvfWGc5Mh1m4m nr9xFnbOCk/CdOE+CXQpxpAgceUwHqjB9NMfFGizdZhh0TWzWgOAjUNRF6jqL+4jFS/UpRRM SQpFjEGqKEz8AmmQoC4UUHp5nGDuREYVpxbFOhSBByxJrT8xgu+PWYrVDF7WeMg5dY7Xzhw7 12LkIa8bdBwi4G9RXWY/7aSiDq9PykJMGMPDRPoqyNVvLEPR6lj3nryosZfLUKjsjHi9djNL 92iqSE/g/AegZdO2fnqu1/AhD2oq97CSQtdCuTrsoCNv1kRiG2NPtPABb3nARBoctrxor6p4 iRspiRmxLpSZaxhbQTUKAn3IJmn5uyeLBrXikN1Ep8q+lyFoiH4INwJuG4ldRgxb67onAMFh meD6Wu9A7cDbBOXgVNfOdrZ5zkClPewRYq6DKi8giRmOckhKlHalM2RWaJg9zuwyRBzwP9X1 WazfsGrAnIXQaVhx3zeegvu+e5D+8zK/kuKHcqT503/j9K2PSfJIZ9bagfmRr5it8us/l6Fm +uzwuPQl32zpsWkP3GPqeb+7DkicRAGOHwBg5UKLrDafVY8RjtJ5j246epJRrGJVp99zo/gl kxRkGcBoLYmrSSfclnYWWMpc771Q5d0oFQyOCFmbx7i2GEubczrpO0Tfoc+N+tvvuFy7+9Gf 99cceW5A9NLVmvm/RYZZsLDt4BMTkmgqj+PGCuHWwIBWaBcaTbHwOK5QTu3xhIyVnK2keAcv 4yf0hjqRMtfZgZ6U+fTRvGd73Kwmnk/nuhNcVPCCYRRch+08axBCS/4vtkoKe4idDTBwTq70 V6NIBE6/OPina48wOPrt4ul8bi7MrJZNVVIOkXm9pCKDDn+0kv/5J5fQcCKUCv4VmipyJ69Z O5Q8e7wAMcHkHlOrYB4NbRhloA62PfCuJ5YyRZCDlzQTlH2FI5lHGaK7fNPuoJJ2LVdnwm8A WCL29tCPIS2KNHXK0EQKCUlf9a8+6ktwBeK1ssMIWL++CNT15iEWx8LPxCz1QpsHIEsO4Yhm eocqMoa7jKksSUTM/GEszt18lqdJXlRQoQlsZAnWLXQsDQJ8W0bQ5LgCX7R2qqtOvFsKUghJ wGGiJXS34p8wlXwSFttNHzv89cEu7EwlkFr9nEgKW6NuOL5vd4s/RgI8T0IXgVflRpG9ORoO 1lUDU5+JITQ3jJkmPl8W3uIHidfDia44W308UMCz0fCfnmrV0vMDWwzAvmM90Yn6FBhfiBX0 bWb6WT9WxPoQZ3V8g4tf3V68trPYMdU9ALQvOyGReG+AIgccz7ppoSMdFg4gULrLu1pjXKWu NQw2vh7bJPKEBI5ooo5LtK//qsRQhXVH15ya6ht041RFF6NZQzo/yaFLn2wXcZ/J/bq10ucI O42L+JtUyWO7gq/ngo5N4UtfYAtxOUI4eAccIzFPWQF6ruTjgR4uaLqqxTRujUZfMVMo+0cd KXqaDOwIk6BjyB1mkjMjvV+FEiWXN0mXDD4jceJqLgnNpRbq+x9U1AA4p3ttVWvDQZX1Ra1v gTCWqzo89Jf2blcx4vCLogTBiGfC8/Ca+CTwQXi7/VMdYzuNOnNhSM0q37mHRhnAr8Kf+tJl pG26dvR8EDYjuxnTVKDi52lEo9X7/6TR8tSCNr8d1NBrBuBWejtwhoNwH+5Ipp3i+Fg5tGra g+7Scmof/sHco156EwOThNBAjAhC6jTRYXxlxOX9vijJEAU7l3aEYmB63TsU1B+SgYJHJ/PU inPpPek44FjnrRmXRMrKalvPM5lHQXFR6AjStzWsAuYBEmOhnepmOPrtTgk2AHxJki0KuTIy rObeUGmbzW3gr/C8/9BuY8rvhE3Mmd0sdNtQm0joexJmxKIJ09YC98CMKc2KIBeyQ3z85DaW AvjTkUfDQfFYDAVVimkvfrCWF6TCNVbb529bnYs8liPYii7OJKYDfEzvm186nNxYX34wPvhN dga/WbqMwOsxo1yA9we/eG/nfwt08ayKqjkIqwhu5ea79ci7bQ2OLhJGQNMUWnKH5iImhmaY 2cyQm9ATQewTkuZ/QOMvZJKMElxgd8t52xAgeSzLBL3tICSzekGw/r6Uw02+qNWd9wEfdbiW luuL1ZgIAmqNrg7tq4gutZviqhxYR5O8g5WM4e7LTAvc2qMBqjL8i/McefjjC3vxeKHL27gq w==
  • Ironport-hdrordr: A9a23:+Zdz3aAlVhpS4UTlHemA55DYdb4zR+YMi2TDsHoBMiC9E/bo7/ xG+c5w6faaskd0ZJhNo6HkBEDEewK/yXcX2+ks1NWZLW7bUQKTRekI0WKh+UyCJ8SUzJ866U 4PSdkGNPTASXZ/yej1iTPWLz/i+rW6GWKT6Ns2A00CceiiUcBd0zs=
  • Ironport-phdr: A9a23:r/BGIxUQlRzcsAesQtmuP9zfBYbV8Kw4XzF92vMcY1JmTK2v8tzYM VDF4r011RmVBtydsqgYwLON6ujJYi8p39WoiDM4TNR0TRgLiMEbzUQLIfWuLgnFFsPsdDEwB 89YVVVorDmROElRH9viNRWJ+iXhpTEdFQ/iOgVrO+/7BpDdj9it1+C15pbffxhEiCCybL58M Rm6txjdutcZjIdtN6o8xAbFqWZUdupLwm9lOV2ckxHg68mq+5Jt7zpesO87+c5aVqX6caU4T bhGAzkjLms4+s7luwTdQAWW/ncTXXkYnRROAwje8RH1RYzxvTfgtup8wyaVI8v7Rq0pVDu47 qdrTBjoiDobNzM87WrahNB8gL5drRm8oRF03ozab5yPNPdmcazdc9EVS2pPUMhSSiJPHJ+zY YQUAuodJOZVtZXxq0cSoRa8AwSnGePhyiVPhn/zxaA23eovHRvb1wE9Ad0OtmnfotDzNKcVS u+1yLfHwTveZP5Rwjjy9o7IfgoiofGKWrJ/as7Rxlc0GgPKi1Wfs43lPzeP2usRtGib6vNtW OSygGEotw9/uCKgxtswiobXnIIVzEjJ+CpkzIspONG1VU51bNylHZZfuCyXM4t7T8EhTm9mp So31qMKtJ+ncCUXyJor2RHSZvKbfoWI/x/uWuicLCpmiX9jZbmxiRGy8U26xe39UMm5yFdKr ixfktnNrH8BzRLT6tKfRvtg5keuxzCP1wbJ5u5aPE80iKzWIIMizL4ojpcfr1jPEyvslEj1j KKabFso9vSr5uj9bbjropmRPJJqhwH6L6QugdC/DvoiMgYTXmia+Pqz2aX/8UD/Xb5ElOc5k rPDv5DfPckbprC2AwtS0os77hawFTam0NABkXYZMV1JZQuLj4bmNlzKOvz4AvC/g1OjkDdv2 f/KJKHuApLILnTbkbfhe6hy61JExQYt0dxS44hYB7IBLf7pREP9qN/VAgU2PgGw2+rnDc9y1 oIaWWKBGK+ZN6bSvEeT6e0xJemAfowVuDD6K/c+4/7hk2Q0mVAYfaaz3JsXbGq0EehhI0Wce XbshMwOHn8QvgUiVOzqlEGCUTlLanqvR648/C00CJq6DYffQYCgmKCO3CCiHpFPem9GDk2MH mzzeoWfW/YMbTqSLdV7njwFU7ihUY4h2gu0uA/00bo0ZtbTryYfrNfo0MV/z+zVjxA7szJuX OqH1GTYBU0y1kkFQXcV2qd1pUE3ggOJ3K4+gPpfH9hez/xMWwY+c5XbyropWJjJRgvdc4LRG x6dSdK8DGRpJjpQ69oHYkImXs6nkgiGxC2yRbkci72MApUwtKPaxXn4YchnmD7dzKd0qV4gT 4NUMHG+wLZl/l3ZCoiPkEOenaKnXasZ1S/JsmyEyDnGp1lWBTZ5Sr6NRnUDfg3TpNX96FnFS uqkBLJhMQ1Gw8qPAqRPY9zty15BQaSrI8zQNkS2nWr4HhOU3vWMYY7tLn0axznYAVMYnho7+ H+HMU0zCn7krT6PSjNpEl3rbgXn9uwWRGqTaEgywknKakRg0+Hw4RsJnbmHTOtV2LsYuSAno jEyHVCn3tuQBcDS7wxmNL5RZ98w+jIlnSrQqhB9M5q8Lqtjmk9WcgJ5uFnr3gl2DYMImNYjr Xcjxg5/YayC11YJezSd1JH2crrZTwu6tBqibejV3FbU1Nu+9aIG6fB+oFLm/UmoGkck73R7w oxNyXLPrp7ODQcUTdfwShNtr0k89+ycOHFtod+FhhgOeeGuvzTP2swkHr4gwxekJJJENb+cU RT1C4scDtSvL+ojnx6oaAgFNaZc7v1RXYvuev2Y1aqsJOslkiihiDEN6o17lEGK8CB4R8bH2 p8Ex7eT2Q7NBFKexB+x99v6n4xJf2RYFGe5jyviA4RVa4V9eI8KDSGlJMj9lbAcz9b9HnVf8 lCkHVYP3sSkLAGTY1LK1gpVzU0LoHajlENU1hRMmioy5uqa1S3KmKH5cQYff3VMXC9khEvtJ o69i5YbWlKpZk4njknt6UH/zqld7KNxSgubCU1FeW71KWZoVqaYub+LYsoJ45Qt+SlaS+WzZ 1mGR6W1+UNLlXO+WTEGlHZnJnmjod3hkgZ/iX6BIXoWzjKRYsx2yRrFpZTdSfNXwjsaVXx9g DjTCEK7Oorh9tGVmpHf9+GmAjj5B9sDLG+xldPG6HrogA8iSQeylP2yhND9RA0z0CugksJvS T2NtxHkJI/iy6W9N+tjOEhuHl71rcRgSeQc2sM9go8d3X8Ci9Cb530CxC35PNMd2qT5Zn4Ab TEOyt/RpgPi3QcwSxDBj5K8TXibzsZ7MpOwb2VQ2SQ65cRHIKiR5b1A2yBypxDryGCZKeg4l TAbx/w07XcciOxcowshwBKWBbUKFFVZNyjhxFyYqsqzp6JNaCOzYKC9gQBgyMu5AujI8WQ+E D7pP40vFihq4oBjPULQhTftv5r8doCYbMpP5EbJ1U6R164PdM13zr1Q2WJmIT6v4yFjkbVgy 0Uwhdfi+9HWTgcltKOhXkwGaHusP5lVone1yvwG1seOg9LxQNM7RmRNDMOuFbXySHoTrai1a FzISWF68ybBX+KYRF/6ig8urmqTQc/3cSjNeT9Bi40lHUfVJVQD0llMDHNjwcF/Rkbyg5a4O EZhumJIuQW+80oQjLoub16mDAK97E+pcmtmEsDOakoLqFgYtwGNdpXBpuNrQ3MCp8Pn8VzLc z3BIVwPVDBBW1TYVQq6YP/0voiGqLLeXq3nfp6sKf2YoOhaHZ9k3LqJ1Y1rt3aJP8SLZTx5C uEjn1FERTZ/EtjYnDMGT2oWkTjMZoiVvkX0/Co/tc25/PnxPWCnrYKSF7tfN8lu8BGqkO+CM eCXniNwNTdf0NsF23bJzLEV2FNahTtpcnGhFrEJtCiFS6y1+OcfFxkAdyZ6L9dF9Yo51whJf MPX05b7iu8+gfkyBFNIE1fmn4DhZMAHJX28KEKSBEuPM+fjR3WDyMX2bKWgDLxI2b8M5lvg5 HDBSx+lYmXQ8luhHwqiOuxNkiyBaRlXuYXmNw1oFXCmV9X+LBuyLN5wizQyh7wynHLDc2AGY l0eOwtAqKOd6SRAj7BxAWtEuzBvIO/CmCCe5e3VApkTuPpvRC9zkqgJhRZyg6sQ9yxCSPFvz WHKqcVypli9juSV4j9uUR4LpzoSwYzX7ANtPqLW8pQGUnHBtkFojy3YG1EBoN1rDcfqsqZbx 43Ula79HzxF9srd4coWA8W8wCevP38oMB6vEznRXlNtpdGDOmTWhkgbm/aXpCT9RnkSr5Htn N8DRuYeWgBkUPwdDUthEZoJJ5IlBlsZ
  • Ironport-sdr: 6771a748_QN14L0ZyCG49Tc0S8d3M+slSQUDPViMdpWDNXmPRkKqFi4h oD61FxDl08W6Va+TeasTN/LG7uywz52jLHubSsg==

It seems to me the main issue is the mixing of = (as in `caract s a =
True`, `In s1 a = In s2 a`) and Props; normally I would use <-> with
Props.

Carrying this through, I suppose the best way to make `set_eq A B` a
rewritable equality would be by declaring it with the generalized
mechanism
(https://coq.inria.fr/doc/V8.20.0/refman/addendum/generalized-rewriting.html#)?

But I'm probably missing some context that makes the original "shape"
more interesting.

RE: "cardinal sin," see
https://softwarefoundations.cis.upenn.edu/lf-current/Logic.html#lab223
for a short statement that "However, the following theorem implies
that it is always safe to assume a decidability axiom (i.e., an
instance of excluded middle) for any particular Prop P" (where the
"following theorem" is
https://softwarefoundations.cis.upenn.edu/lf-current/Logic.html#excluded_middle_irrefutable).

As a last thought, a different alternative might be to use bools
rather than Props if you want to write `= true`. There might be
something about "proof irrelevance" here, too.

On Sat, Dec 28, 2024 at 10:29 AM richard <richard.dapoigny AT univ-smb.fr> wrote:
>
> Dear Coq user,
>
> I am working on sets with characteristic functions and a datatype called
> object for wich equality is decidable.
>
> Singletons called ι are also defined in this context. An excerpt of the
> code is given below.
>
> Definition object: Type := t.
>
> Definition eqobject_dec := eq_dec.
>
> Inductive N : Type :=
> | Caract : (object -> Prop) -> N.
>
> Definition caract (s :N)(a:object) : Prop := let (f) := s in f a.
> Definition In (s :N)(a:object) : Prop := caract s a = True.
> Definition incl (s1 s2 :N) := forall a:object, In s1 a -> In s2 a.
> Definition set_eq (s1 s2 :N) := forall a:object, In s1 a = In s2 a.
>
> Definition ι (a:object) :=
> Caract
> (fun a':object =>
> match eqobject_dec a a' with
> | left h => True
> | right h => False
> end).
>
> My question is the following : is there a possibility to prove the pairing
> axiom with these assumptions, i.e. to prove that
>
> Lemma pairN : forall (x:object)(A:N), set_eq (ι x) A <-> ι x = A.
>
> In addition we assume classical logic.
>
> Thanks in advance,
>
> Richard



--
D. Ben Knoble



Archive powered by MHonArc 2.6.19+.

Top of Page