Skip to Content.
Sympa Menu

coq-club - [Coq-Club] [CFP] Gemini 2.5 Pro AI vs Coq vs ω-categories and schemes — Re: [ANN] coq-lsp 0.2.3

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] [CFP] Gemini 2.5 Pro AI vs Coq vs ω-categories and schemes — Re: [ANN] coq-lsp 0.2.3


Chronological Thread 
  • From: Christopher Mary <admin AT AnthropLOGIC.onmicrosoft.com>
  • To: Coq Club <coq-club AT inria.fr>, Emilio Jesús Gallego Arias <e AT x80.org>, "yves.bertot AT inria.fr" <yves.bertot AT inria.fr>
  • Subject: [Coq-Club] [CFP] Gemini 2.5 Pro AI vs Coq vs ω-categories and schemes — Re: [ANN] coq-lsp 0.2.3
  • Date: Thu, 10 Jul 2025 12:37:14 +0000
  • Accept-language: en-US
  • Arc-authentication-results: i=1; mx.microsoft.com 1; spf=pass smtp.mailfrom=anthroplogic.onmicrosoft.com; dmarc=pass action=none header.from=anthroplogic.onmicrosoft.com; dkim=pass header.d=anthroplogic.onmicrosoft.com; arc=none
  • Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector10001; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-AntiSpam-MessageData-ChunkCount:X-MS-Exchange-AntiSpam-MessageData-0:X-MS-Exchange-AntiSpam-MessageData-1; bh=I48RDsgQDkqrqPGu812MoYVq732ILVWlZN0wahVuNSE=; b=LS4Zg1wE06vGyMTVwqnywrgSMdFqObmlyD8cS+ymx1ACZ9Ii3TaGe1mlzmzkRZBITe6lAzy2c2uaRcU9tBqlWMYjhHya8s6DAUmD7XcsAUNXc0iP4UZlmwQbrJnupABf2wMOTRW22qUZGbcbpDGbzNtj/+c0TXElUxMuU/ZplCJTlMGekSfXUgk5Fq6p1NuXIAmZvEN9shjZAEyHvaGmt7x3Gm5kZslm9zkWsgi2yfPLKE8J3VDz0IEyciNRV7rWMcRz66+svArcFEJ2MkXE8+hYrQ29t9ZGIrwNchMKvtG2xPxh8u+OU76J4w67rYjW7/YMiEDvI1044nLMGVx+5Q==
  • Arc-seal: i=1; a=rsa-sha256; s=arcselector10001; d=microsoft.com; cv=none; b=SnyFt98J3SU/lWzMb5iltrS5CVReaop5cvjUEGYpqBDMB7fXSbj1VS/xC2yDeHqQ2wa7OIeUIyvMys2ZaKK4OVKoukNVUQ5xW5hEvcbY0N35n6yQI1aYWZy2c2NFPJQsvIpwMCMu3yK9OWcBrJFIbI/EEdMCy8Kjjh5Zza90tzR/GVm07QxrOMP95T7XE4Qd5QH+uIxqXlrGyMUtCiPBKySQppURWl6n1v8XHO2mtRjIQkLUQJLr+0n8ssor1uUdPpczjg99mj91Tm6BXUV2nZ5ei4cpvTVuQzs2YcOf12WLLFzlOpS0oDIsKEIB6C+gIGw+Wulti/qDRCqiViCRiw==
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=admin AT AnthropLOGIC.onmicrosoft.com; spf=Pass smtp.mailfrom=admin AT anthroplogic.onmicrosoft.com; spf=Pass smtp.helo=postmaster AT NAM12-DM6-obe.outbound.protection.outlook.com
  • Ironport-data: A9a23:i3uABKmjaariJZNRQ3ludhPo5gw0LURdPkR7XQ2eYbSJt1+Wr1Gzt xJJWG2CbqqDZ2v3LdEgOdiy9kgEusXQyd9nTAA6rCwwQVtH+JHPbTi7BhepbnnKdqUvb2o+s p5AMoGYRCwQZiWBzvt4GuG59RGQ7YnRG/yhTreCYn0sLeNdYH9JoQp5nOIkiZJfj9G8Agec0 fv/uMS31GWNglaYCUpKrfvdwP9TlK6q4m5A4QVmPakjUGL2zhH5MrpPfcldEFOjGuG4LsbiL 87fwbew+H/u/htFIruNjrbhf0QWdaXZNA6Ih2A+c/DKbs9q+0Teeo5iXBYtQR8/Zwehx7id+ /0R3XCEcjrFC4WX8Agrv7a0JAklVUFO0OevzXFSKqV/xWWeG5fn660G4E3boeT0Uwu4aI1D3 aVwFdwDUvyMr9mJn6m4FLFzut4mNNi1Eb4fnSp6lgiMWJ7KQbibK0nLzflx+W5qw+xrQ7PZb cdfbidzZhPdZREJIk0QFJ81gOavgD/4biFcr1WW46Ew5gA/ziQtiP60aIWTIIDRA5QL9qqbj jquE2DRCx0fNdq3wDyZ8mirnuvIkiLwHoUUEbyz7Plxh1OPgGcUDXX6UHPh+qDg1RbjBoM3x 0o80CFxhI9uxRWScpr8Q0ejone7sBdAYo8FewE9wFrWkPaLi+qDPUAPSScEY9g7vuctVDky3 xmImcnoDHphqtW9Q3+H6rCIhSGzPCIPJCkDYzUFRE0L+bHeTJobixvOSpNvFfCzh9isQzb2m Wjb8m45mqkZitMN2+Oj51fbjjmwp5/PCAko+gHQWWHj5QR8DGK4W2C2wWPksu1Dct6GckOEp GlatvWey7sUVqjYwURhX94xNL2u4v+ENhjVjlhuA4Qt+lyRF5iLLdA4DNZWdBgBDyoURQIFd nM/ru+42XO+FH6jbKsyb4fvDc0vlPLnE469B66SacdSaJ9scgPB5DtpeUObw2Hqlg4rjL07P pCYN82rCB726JiLLhLmHY/xMpdynEjSIF8/o7imlnxLNpLCNRaopU8tagfmUwzAxPrsTP/p2 9heLdCW7B5UTffzZCLamaZKcg1QdShmVMiq8p0IHgJmHuaAMDFxYxM26eN+E7GJY4wLx7yVl p1AchMGlwen2SObQel0Qik7NOK2B8gXQY0H0dwEZg3yhydLjXeH6aYUbZwserc7vOdk1+Ycc hX2U5ToPxi7cRyeo251RcCl8uRKLU337SrQZHHNSGZkIPZdq/nhoYaMkv3Hr3BWVnLfWApXi +HI6z43trJZGV47VZeGOaPyp75z1FBE8N9Ps4LzCoE7UC3RHEJCcUQdV9due5BceybQjCCXz RiXCho+rOzA6d19utrQiKzO68/jH+JiFwAIVyPW/JSnBxn8p2CD+I5nVPrXXDb/UGivxr6uS 98IxN7BMdoGvm1wjaxCL5hRw5kT2f7Ttp5B7wE9HHz0f1WhUbxhBX+d3PhwjK5Gx54HmAjrc H6z18h+BI+vHsK8Dm8UGRcvNdrb5PRFwzPX1Ok+AGfk6ABJ/raoVVtYPkSShBxnN7EvYZkBx ME/svU38C26sAIhafydvxBX9kOND30OaLomvZckG73WihIn51VBQJ7EAArkycirR/QVFWI1M xmGh7HnhbtO9nHdcnE2K2fB7dBdibsKphpO6l0IfHaNpfbomd412w934x0sbwEI0ChC7f1/C lJrO2JxO6+K2TVi3+pHfmK0HjB+FA+rwVPwx3QJhV/mYRGRDEKVF1IEOMGJ4Ew92EBfdGIC/ LinlUDUYQyzd8T1hiYPSUpprsL4duNI9yrApduGGvqUFJxrcBvnha6TPVAzkSXFOv9opkP7p rhNxt1SOInbLi8bppMpB7aKjYowTA+2H00cYPVD0p5QI0TiVmCT4xasJXq1WPtxHN3R0ErhC 8VRNsNFDBu/8yCVrwEkP60HIp4qvf0H+dYteqLhfkQjj+OTjAN47Yza83HmtTQJXd40wMMxA d7TfWjaE0i7p3hdq0nSpuZqZ0u6ZtglYlXn/eaXqe8mKbMKgNtOQ2oTjISmni+wGxQ+2T65p ybBbPLy480+7N00hKrqMKFIJzvsGOPJTO7SrTyC6YVfX+3AIeLlll0wuFL4Gy90ILFIedB8t YrVge7NxEmf4YoHCTHIqaKgSZtMy965BtdME8TNK3JfoyuOdens7zYH+EG6MZZ5q8xc1Ob2W zqHbNaMSvBNV+d/3HF1bw1sIyQZAYnzbYbionqZhNaIAR4/zwfGDY2G8VnEUGJlTRILaqbOU lLMh/WT595jvNttAj0ADKpYGJNWGgLodpYnUNzTjgOmKFeUrGmMgIa/qip42wr3UiGFNO3Y/ aP6QgPPcUXumaPQk/BcnY9AnjwWK3dfgeM2REUW/o9pgR/rCmc5CPkXa8gaA65ygyap8o/KY gjQXTFzFQT8QjV2XhHu6/vzXgqkJ7IvO/WoAhcL7k+reyONK4fYO4RY9wBk+GZQeBL46t2eO fUy2ybXBQeg5b1PScI4xO2Jsc0+ytz0nns3qF3AyersCBMgMJA2/X1GHi8WcAfYEsvIxX75F UJsSU9qGEiEGFPMS+B+cHtoGTYcjjPl7xMsSQytmN//mYGq/Nds+c3FGdPY8+M8NZwRBbs0W 3nIaXOH4DmW1lwtqKIZgY8VrpEuO82bPPqRDfHFfhITrZGS+258HsIlnAgzdu8A1jNbMWvgk miL3yBjKmWDcUxf4ejDg0FBsZd8SWkFADz1nRby722O2wAwy9/CPQOm1kTnIJX3sLLupFhcX CxUVkuKvlmKr3HxkFGSbBjASoCvXan91EUoUxzEirvUuzL1EipxMe4k1Es3kdVM7HdD24NYM r6L1Mkw856mWSXJ2B34mNAeYf5sqLJp9sErlery5Bwyfjev/NqTTjp7Au/SosUubdVeUFId0 tfUc1jYBgPd9w5XWz1uocrKTJJgrL+/0trULX0hWNtCtOb0Poc3wvaFDMrHROiSfYyHSYaZa 131xtmaOlAwJ1TsYdJXmVE27sLT/ucGGo0NQKf7HAf/6pVrMF2EjTeAJkHIEiFqobBe178b3 iHO
  • Ironport-hdrordr: A9a23:ZHFpOaDbvAHOGyPlHemn55DYdb4zR+YMi2TDGXoQdfUnSL38qy nOpp8mPHDP5Qr5NEtQ++xofZPwJU80lqQY3WByB92ftWDd0QOVxcNZnOjfKlbbdREWmNQ96U 4tScdDNOE=
  • Ironport-phdr: A9a23:IHWafhDbKk1s6rVO4mp/UyQUTEgY04WdBeZ0wp8uirYUN7+m44ynJ kvUo/NkkF7OW4zfrfNCkevf9a76CiQb+ZjUlncEfdRXUgMdz90MllkpDMuED2XSKuLqdSsiO ONtdXQj+He+MENPH935aUGUqXq3vnYJAhuqDQNuPazuH5LKycG+1uS84ZrWNgxEgTu7Sbp0M BWsqh3VscYXis1lLKMwwQHOuXxGZ6JdwmY7bUmLkUPE79yrtIVm7zwWu/8l8JtYVr7meq0jU bFCJBIPFjlvoeHO61zERwbJ4WYAWGILlBYOGxLC8BzxQpb2tG39q/Z53y6Ze8bxSNjYQByE6 KFmAF/tgSYDbXsi9X3Pz9Z3h+RdqQ6goBp2x8jVZpuUPbxwZPGVe9RSXmdHUstLMk4JSoqhc 4sCCfYANudEvsH8oVUJtx63GQirAqvm1DZJgnb82aBy3f4mFEnK2wkpHtRGt3qxzp29PasXU Oad5a/UzS/Ed9dx9hbWro/OdxEqu/aXWrxsN8HWzAhnFg/IiEmRtZ2wJymchYFv+yCQ6+ttU /7qinZy91k3+2DwgJ1w0c+Y2NFwqBiM7yhyzYcrKMftTUd6ZYThC55Mr2SAMIAwRMo+QmZus SJ8y7scuJf9cjJZrfZvjxPZdfGDdJCFpxz5U+PEaz50gXNjULu5mxao9lCkzeL9XY+z1lNLp TBCid7CqjYG0BmZua3lArNtu1ys3zqCzVWZ4+1BIEYcvKzHK4Qm2poXubs490PFGy79gkLti 6GKME4j/6L7joavKqWjrZiaOYhujwj4Oal7gc2zD9MzNQ0WVnSa8+CxvFH61XXwW64Czvg/k 62D9YvfOdxevKmyRQlczock7R+7STagytUR23cdfhpJfxeOjo6hPF+rQriwBPu6glKEmTF3x +rBJrnmDZTGaH/FlbbqZ7Fm7EBAjgE0yJhT6olVBbcIPP/oEhOp8oWAUVljb1fykriCap013 5hWQW+VB66FLK7e+USF4O4iOajEZYMYvir8N+lw4vfviXEjnlpOGMvhlZATaX2+ArFnOxDFO Ty12ohHSztR+FtgH4mIwBWYXDVeZmi/Rfc57zA/Use9CJvbA5qqi/qH1Tu6GZtfYiZHDEqNG DHmbdbhOb9EZSSML8tmijFBW6KmTtpr3B2rtQnSwrx7LvDT4ikfupPokt9z4uzYjxYp8jJoS c+a1iveKgM81nNNXDIw0K1l9AZ0xlKC14BxheBYD9tL4/RGUwx8MpjZzudgDMv1VB6HddCMA gXDIJ3uEXQ6SdQ/xMULakB2FoC5jxzN6CGtBqcci72BAJFnurKZxXX6INxxjmrXzKR0xUdzW dNBbCf148w3vxiWHYPClF+V0rqnZbhJljCY73+NlCKPpB0KDFY2AP+DBTZHIRKL5dXhuhGeF /n3Uethak0ZjpfcT8kCItzx0QcbHrG6YIyYOyTp3D7tTReQmuHRNsyzIz9bhGOFTxFa2wELo STbb05nXnzn+ySGS2UxcDCnK0L0rbsn8C/9EhByl0fSKBQ+n7utpExPjKTFGapKh+AK5H95+ WczQAbYvZqeCsLe9VBoJPwOOIpkslkbjTmL5Ushb9ShN/4w3FdGKlYu5hq82UkvUdcQyZBy/ iFtkVMXS+rQ0UsfJWmRhcmiY+SOeGeupEv9YPaOggOMl4vPsqYXtqZiog267ljwTxgsry08g dcNiyPOtNKXVkJXWJb1GC7b7jBCrqrBKmk47oLQjzh3NLWs9yXF0JQvDfckzRCpe5FeNrmFH Un8CZ9SC8+rIe0s01+nC3BMdPhV77IxNti6euGu/oeOZbwlsBf4yGNN7cZ6z16G8Dd6RqjQx ZEZzvqE3wyBETDhkFOmtcOxkodBAFNaVmay0inrAodNa7Y6Id5NUD/xZZfrnZMv2dbkQDZA+ USmBk8a1cPhYheUY1HnnEVR2UkRvX27iH64wjhzwFRL5uKU2C3DxfindQJSZjYNHTE9yw2we s7l0YN/PgDgdQUimRq76FyvwqFaoP46NGzPWQJSeCOwKWh+U6y2v77EYshV6Zpuvz8ENYb0K V2cVLP5pAMXli35GG4Ljjk3cjCskpz/gxxgj3qZK3lypzzef8Rxzg3Y/9vSWbha2T9MF0waw XHHQ0OxOdWk54Dej5DYruW3TH6sTLV1WAyyl8askXX+4mdnRxqig/q0h9vrVxAg1jP23MVrU iOOqwvgZo7s1OKxNuctLSwKTBfsrsF9HI95iI45gpodjGMbipui9n0CiW7vMN9f1PG2fD8XS DUM2dKQ/Bn91RgpMCeS34ygHCb4oIMpd5ygb2gRwC54881aFPLe8ulfhSUs6lug8VCNOb4sx HFFj6NpsSNSgvlV6lZ1iHzFXfZKWxEfZHKJ9VzA7sji/vgNIj/3Kf7okhI5xI3pDane8FwGH i+hINF6W3c3t5s3MUqQgiCprNi8I5+IK4pU70Lx8V+IjvAJestpyrxW2mw/fzq65CJtyvZl3 0Znhcjo5dHeeWsxpPrrUFkEZliXL4sS4m+/168Gx5TPhtn9EMk5QWdZG8e5BfOwTmBIvKy+Z V/XSW8y9i/AS+qHRVfNugA79hetW9iqLy/FfnBBlIc7HUDPKhAH21IfBG1izMx+S1nixdS/I h1wvmlDvweh+BUQkrk6OUGnCjWN41ryInI9TJzVRPKzxihE+0fPNtS6yc1SNGdf+JigpxaKM WuVe0JDCmRbAiRs5njFF5z3v5zs1rbdAeCzafzTfb+JtOpSEe+Swo6i2Zdn+DDKMdiTOn5lD Lsw3U8RBBiR9OzQnSkPUSsPkyXCbsXdoxG5+yZtqdu4/uitUwXqt9LnNg==
  • Ironport-sdr: 686fb406_xl/K1jG2HZszLKrBy8jE8Thn5o24SuWvCuVAEq3KzxmvFQC UK8+fTmfrCeufZlbVTxKpoTpc+g7TedF1PbbU6w==
  • Msip_labels:

Dear Jesús,

Thanks for the updates to `coq-lsp` and the upcoming port of `jsCoq` to
`coq-lsp`; but your last update from `jscoq AT 0.15.1` to `jscoq AT 0.16.0` titled
"Port the JS codebase to ES modules" had introduced some regressions in
usability, which I learned the hard way (an afternoon wasted, lol)

Indeed, I was trying to integrate a `jsCoq template` into the `hotdocx`
calendared-marketplace publisher:

https://hotdocx.github.io/#/hdx/25191CHRI43000 (jsCoq template)

but it turns out that `jsCoq` versions after 0.15.1 throw the error "Cannot
use 'import.meta' outside a module" when used within a `Sandpack` sandbox
environment.

Therefore I had to downgrade your `jsCoq` npm package down to `jscoq AT 0.15.1`
to make it work; or could you try and find an alternative solution? In fact,
with your help, we could upgrade `jsCoq` into a full integration instance
`hotdocx/jsCoq` which would solve these two earlier goals attempts:

- Yves Bertot's "Coq Exchange"

https://project.inria.fr/coqexchange/news/

- Thomas Lamiaux's "Coq Platform Doc"

https://coq.inria.fr/docs/platform-docs

`hotdocx` is a sponsored open source project hosted on GitHub itself; and
institutions such as INRIA/Coq can host their own instance of hotdocx:

https://github.com/sponsors/hotdocx

hotdocx/jsCoq would be the hottest fastest calendared marketplace publisher:
publish your daily experiences apps, get paid.

Imagine a web and mobile app (published in the Android store), where users,
anonymous or verified via Stripe or GitHub Sponsor payment, post events at
local business places or online (via SharePoint Teams), based on `paper-app`
AI templates (such as the `emdash`, `arrowgram`, `jsCoq` templates) which can
cite/review references from overlaid document libraries such as arxiv +
SharePoint + GitHub repositories, and which can be cited/reviewed (with
confidentiality config options) by other remixing events conditioned by
in-app purchases). This, is hotdocx and would be hotdocx/jsCoq.

Here is an example of an `arrowgram` AI template in hotdocx:

https://hotdocx.github.io/#/hdx/25188CHRI26000

I specially created this new `arrowgram` drawing app for hotdocx; it hooks
into the markdown rendering pipeline and renders category-theory commutative
arrow diagrams SVG from (AI generated) JSON specifications (or from imported
`https://q.uiver.app` drawn-diagrams).

https://github.com/hotdocx/arrowgram

These hotdocx AI templates pipelines, such as the `arrowgram` template, can
generally be extended with markdown/latex, katex math, mermaid conceptual
diagrams, vega-lite data analysis charts, two-columns papers, reveal-js
presentation slides, etc. In general these hotdocx AI templates pipelines can
be prefixed by a Mistral AI OCR preprocessing of PDF files input to extract
markdown latex math text together with base64-encoded images; and of course
the pipeline and its whole context of files and agentic tools can be
post-processed in cascade by the Gemini 2.5 Pro AI.

Here are other examples of how I specially created this new `emdash`
functorial programming language for hotdocx, to show how hotdocx AI templates
are:

- re-formattable,

https://hotdocx.github.io/#/hdx/25188CHRI25004

- and experiment-able,

https://hotdocx.github.io/#/hdx/25188CHRI27000

`emdash` is a new functorial programming language implemented in Typescript;
it features a bidirectional type checker with higher-order unification-based
hole solving for interactive proof, definitional equality via βδι-reduction
(including user-supplied rewrite rules and unification rules), Higher-Order
Abstract Syntax (HOAS) for binders, and features a new "functorial
elaboration" paradigm where coherence laws (e.g., functoriality, naturality)
for kernel constructors are definitionally verified via Kosta Dosen
techniques. `emdash` implementation in typescript was "essentially generated"
by Gemini 2.5 Pro AI from a specification written in Lambdapi (i.e. a manual
correction to a "mathematically-correct bug" in HOAS architecture made all
the standard dependent-types unit-tests pass from 300 seconds down to less
than 1 second, etc.):

https://github.com/1337777/cartier/blob/master/cartierSolution18.lp

https://github.com/hotdocx/emdash/blob/main/docs/emdash.pdf

https://github.com/hotdocx/emdash

This `emdash` example illustrate the importance and necessity for hotdocx
templates pipelines to be able to leverage AI.

Therefore do you think hotdocx.github.io would be a good platform for us to
co-editorialize a new version of Bertot's "Coq Exchange" with hotdocx/jsCoq
integration?

If not, then I will just steal Coq kernel source code into my `emdash`
functorial proof assistant anyway, and ask Gemini 2.5 Pro to rebrand it, lol


References:
[1] Kosta Dosen; Zoran Petric. “Cut Elimination in Categories” (1999)
[2] Pierre Cartier.
[3] Gemini 2.5 Pro. via hints



# APPENDIX PART 1 — EMDASH SPECIFICATION IN LAMBDAPI

TLDR: the composition term `∘>` is clearly decreasing in the functionality
rule `F a' ∘> F a ↪ F (a' ∘> a)` but it is not clear how one should
orient the naturality rule `ϵ._X ∘> G a ↪ (F a) _∘> ϵ._X'` so that the
composition term on the RHS is smaller; the key insight by Dosen is that the
RHS is actually a Yoneda/hom action/transport not the usual composition...
Then extensionality/univalence is directly expressible via rules such as
`@Hom Set $X $Y ↪ (τ $X → τ $Y)`. The prerequisite benchmark becomes whether
`symbol super_yoneda_functor : Π [A : Cat], Π [B : Cat], Π (W: Obj A),
Functor (Functor_cat B A) (Functor_cat B Set)` becomes computationally
expressible in this specification by `reflexivity` proofs alone. Furthermore
simplicial/cubical ω-categories become expressible via an elementary insight:
given the usual triangle simplex `{0,1,2}` with arrows `f : 0 -> 1`, `g: 1 ->
2` and `h: 0 -> 2`, then the `projection functor` which maps a surface `σ: f
-> h over g` to its base line `g` will indeed also functorially map a volume
from `σ` down to a base surface from `g`... visually:

https://cutt.cx/fTL

Ultimately it becomes expressible to extend the sheafification functor from a
site topology closure operator, and to specify a co-inductive computational
logic interface for algebraic-geometry schemes, as outlined in

https://github.com/1337777/cartier/blob/master/cartierSolution16.lp


```
constant symbol Cat : TYPE;

injective symbol Obj : Cat → TYPE;

injective symbol Hom : Π [A : Cat] (X: Obj A) (Y: Obj A), TYPE;

constant symbol Functor : Π(A : Cat), Π(B : Cat), TYPE;

symbol fapp0 : Π[A : Cat], Π[B : Cat], Π(F : Functor A B), Obj A → Obj B;
symbol fapp1 : Π[A : Cat], Π[B : Cat], Π(F : Functor A B),
Π[X: Obj A], Π[Y: Obj A], Π(a: Hom X Y), Hom (fapp0 F X) (fapp0 F Y);

constant symbol Transf : Π [A : Cat], Π [B : Cat], Π (F : Functor A B), Π (G
: Functor A B), TYPE;

// notation: (ϵ)._X for tapp ϵ X
symbol tapp : Π [A : Cat], Π [B : Cat], Π [F : Functor A B], Π [G : Functor A
B],
Π (ϵ : Transf F G), Π (X: Obj A), Hom (fapp0 F X) (fapp0 G X);

constant symbol Functor_cat : Π(A : Cat), Π(B : Cat), Cat;

unif_rule Obj $Z ≡ (Functor $A $B) ↪ [ $Z ≡ (Functor_cat $A $B) ];

rule @Hom (Functor_cat _ _) $F $G ↪ Transf $F $G;

unif_rule Obj $A ≡ Type ↪ [ $A ≡ Set ];

rule @Hom Set $X $Y ↪ (τ $X → τ $Y);

// yoneda covariant embedding functor to Set; also TODO: contravariant Yoneda
// notation: f _∘> a for (fapp1 (hom_cov W) a) f;
constant symbol hom_cov : Π [A : Cat], Π (W: Obj A), Functor A Set;

rule fapp0 (hom_cov $X) $Y ↪ Hom_Type $X $Y;

constant symbol Cat_cat : Cat;

unif_rule Obj $A ≡ Cat ↪ [ $A ≡ Cat_cat ];

rule @Hom Cat_cat $X $Y ↪ Functor $X $Y;

constant symbol hom_cov_cat : Π [A : Cat], Π (W: Obj A), Functor A Cat_cat;

// the objects-map of hom_cov_cat is hom_cov
rule Obj (fapp0 (hom_cov_cat $W) $Y) ↪ Hom $W $Y;
rule fapp0 (fapp1 (hom_cov_cat $W) $a) $f ↪ (fapp1 (hom_cov $W) $a) $f;

// notation: `f ∘> g` or `g <∘ f` for `compose_morph g f`
symbol compose_morph : Π [A : Cat], Π [X: Obj A], Π [Y: Obj A], Π [Z: Obj A],
Π (g: Hom Y Z), Π (f: Hom X Y), Hom X Z;

// f _∘> a ≡ f ∘> a
unif_rule (fapp1 (hom_cov $W) $a) $f ≡ compose_morph $a $f ↪ [ tt ≡ tt ];

// F a' ∘> F a ↪ F (a' ∘> a)
rule compose_morph (@fapp1 _ _ $F $Y $Z $a) (@fapp1 _ _ $F $X $Y $a')
↪ fapp1 $F (compose_morph $a $a');

// ϵ._X ∘> G a ↪ (F a) _∘> ϵ._X'
rule compose_morph (@fapp1 _ _ $G $X/*/!\*/ $X' $a) (@tapp _ _ $F $G $ϵ $X)
↪ fapp1 (hom_cov _) (tapp $ϵ $X') (fapp1 $F $a);

// # ω-category, arrow/comma category, dependent arrow category of a
dependent/fibration category

constant symbol Total_cat [A : Cat] (M: Functor A Cat_cat): Cat;
injective symbol Total_cat_proj [A : Cat] (M: Functor A Cat_cat): Functor
(Total_cat M) A;

rule Obj (Total_cat $M) ↪ `τΣ_ X : Obj _, Obj_Type (fapp0 $M X);

rule @Hom (Total_cat $M) $Y_f $Y'_f'
↪ `τΣ_ a : Hom (sigma_Fst $Y_f) (sigma_Fst $Y'_f'),
@Hom_Type (fapp0 $M (sigma_Fst $Y'_f')) (fapp0 (fapp1 $M a) (sigma_Snd
$Y_f)) (sigma_Snd $Y'_f');

rule fapp0 (Total_cat_proj $M) $Y_f ↪ sigma_Fst $Y_f;
rule fapp1 (Total_cat_proj $M) $a_ϕ ↪ sigma_Fst $a_ϕ;

// this expresses that `@hom_cov_cat (Total_cat M) (W_,W) : Functor
(Total_cat M) Cat`
// is both fibred over `Total_cat M` and is above/projects to
`@hom_cov_cat A W_`
// also expresses composition in ω-category and whiskering/composition of
2-cell by 1-cell
symbol hom_cov_cat_total_proj [A : Cat] (M: Functor A Cat_cat) (W : Obj
(Total_cat M)):
Transf (@hom_cov_cat (Total_cat M) W) (fapp1 (@hom_cov Cat_cat _)
(@hom_cov_cat A (fapp0 (Total_cat_proj M) W)) (Total_cat_proj M));
```





  • [Coq-Club] [CFP] Gemini 2.5 Pro AI vs Coq vs ω-categories and schemes — Re: [ANN] coq-lsp 0.2.3, Christopher Mary, 07/10/2025

Archive powered by MHonArc 2.6.19+.

Top of Page