Subject: Ssreflect Users Discussion List
List archive
- From: Reynald Affeldt <>
- To:
- Subject: basic facts about matrices
- Date: Wed, 17 Jun 2009 18:42:10 +0900 (JST)
Hello,
I am afraid it is an easy question that just reveals my lack
of understanding.
How am I supposed to prove the following facts?
Reynald
--
Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq fintype finfun
finset prime.
Require Import groups zmodp ssralg perm matrix bigops.
Open Local Scope ring_scope.
Lemma coucou : forall (F : fieldType) n (s : 'S_n) (z : matrix F 1 n) j,
Matrix [ffun ij => z ij.1 (s ij.2)] 0 j = z 0 (s j).
Proof.
Abort.
Lemma beuh : forall (F : fieldType) n (s : 'S_n) (z : matrix F 1 n) i j,
(\matrix_(i0, j0) (if s i0 == j0 then 1 else 0)) i j = if s i == j then
(GRing.one F) else (GRing.one F).
Proof.
Abort.
- basic facts about matrices, Reynald Affeldt, 06/17/2009
- RE: basic facts about matrices, Georges Gonthier, 06/17/2009
- Re: basic facts about matrices, Sidi Ould Biha, 06/17/2009
Archive powered by MHonArc 2.6.18.