Skip to Content.
Sympa Menu

ssreflect - Re: [ssreflect] trivIset and intersecting sets...

Subject: Ssreflect Users Discussion List

List archive

Re: [ssreflect] trivIset and intersecting sets...


Chronological Thread 
  • From: (Emilio Jesús Gallego Arias)
  • To: Florent Hivert <>
  • Cc: "ssreflect\@msr-inria.inria.fr" <>
  • Subject: Re: [ssreflect] trivIset and intersecting sets...
  • Date: Fri, 12 Feb 2016 15:55:42 +0100
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None ; spf=None ; spf=None
  • Ironport-phdr: 9a23:w5wdmRPwcoWVg9pq7cgl6mtUPXoX/o7sNwtQ0KIMzox0KPX4rarrMEGX3/hxlliBBdydsKIbzbGI+P6wEUU7or+/81k6OKRWUBEEjchE1ycBO+WiTXPBEfjxciYhF95DXlI2t1uyMExSBdqsLwaK+i760zceF13FOBZvIaytQ8iJ35vxjL75pc2bSj4LrQT+SIs6FA+xowTVu5teqqpZAYF19CH0pGBVcf9d32JiKAHbtR/94sCt4MwrqHwI6LoJvvRNWqTifqk+UacQTHF/azh0t4XXskztSQyV630AGkUXjBdSH0CRwhX9RJr3rm3at/RwwjWyOdf3C74uD2eM9aBuHRDhjCMKODkR+3vWzMF2l6dD5hy771xSxo/QYYbdFvdl7LiVUtoeQWdOWY54TS1IGcLvPMM0E+MdMLMA/MHGrFwUoE77XFH0CQ==
  • Organization: CRI ParisTech

Another thing about the script that got me thinking was:

> Lemma trivIsetEn (T : finType) (P : {set {set T}}) :
> ~~ trivIset P =
> [exists A in P, [exists B in P, (A != B) && (A :&: B != set0)]].

Which is basically a restatement of trivIsetP. In fact, if you at the
code, we have basically proved nothing new.

I'm talking very speculatively given that I don't know what the final
theorem is, but maybe I'd try to avoid introducing this lemma and the
computation of the sets A B altogether and try to derive the final proof
directly from trivIsetP.

Best regards,
Emilio



Archive powered by MHonArc 2.6.18.

Top of Page