Skip to Content.
Sympa Menu

ssreflect - [ssreflect] Contributing to the wiki

Subject: Ssreflect Users Discussion List

List archive

[ssreflect] Contributing to the wiki


Chronological Thread 
  • From: Florent Hivert <>
  • To: "" <>
  • Subject: [ssreflect] Contributing to the wiki
  • Date: Wed, 2 Mar 2016 14:14:40 +0100
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None ; spf=None ; spf=None
  • Ironport-phdr: 9a23:EEtB9RRgN/0R4EbLK7CvNMGqB9psv+yvbD5Q0YIujvd0So/mwa64bBeN2/xhgRfzUJnB7Loc0qyN4/+mBjZLvcjJmUtBWaIPfidNsd8RkQ0kDZzNImzAB9muURYHGt9fXkRu5XCxPBsdMs//Y1rPvi/6tmZKSV3BPAZ4bt74BpTVx5zukbvipNuMOU4U2nKUWvBbElaflU3prM4YgI9veO4a6yDihT92QdlQ3n5iPlmJnhzxtY+a9Z9n9DlM6bp6r5YTGfayQ6NtB6dDFjkoN20++OXurgOGTA2V53JaU2MMkxMODRKPpEXhRY38vC/3vfZV3TKAeMzwV7E9HzWk9aZiDhHy3nQpLTk8pU/TjdZ9ir4TgBO/qgZji9r6ZIaPOfxiOIPcY94AWUJFRMcXWTYXUdD0VJcGE+dUZbUQlIL6vVZb9RY=

Dear all,

I'm trying to help improving the wiki. I wrote a tentative gotchas.md page
however I don't know how to contribute it. Specifically, I'm able to make a
clone of
https://github.com/math-comp/wiki/wiki
On my laptop. But since it's not a classical github repo I can't make a pull
request. Is there a good solution which doesn't require a write access ?

By the way, I've attached a patch for my changes.

Cheers,

Florent
diff --git a/Home.md b/Home.md
index 2e03ad0..a5a6dfc 100644
--- a/Home.md
+++ b/Home.md
@@ -6,5 +6,5 @@ An umbrella/show-case to foster MC related projects and MC
itself.

- [[Tutorials, teaching material|tutorials]]
- [[Installation using OPAM|install-opam]]
-- Gotchas
+- [[Gotchas|gotchas]]
- [[Good practices|good practices]]
diff --git a/gotchas.md b/gotchas.md
new file mode 100644
index 0000000..f81cae3
--- /dev/null
+++ b/gotchas.md
@@ -0,0 +1,51 @@
+# SSReflect tactical gotchas
+
+### Boolean reflexion
+
+- proving a
+
+ ```reflect A B```
+
+ lemma
+
+ ```
+ apply (ifP idP).
+ ```
+
+- This works with more complicated reflexion lemmas, for example:
+
+ ```
+ reflect (forall s1, s1 \in P1 -> ...) [forall (x | x \in E), ...]
+ ```
+
+ is proved using:
+
+ ```
+ apply (iffP forall_inP)
+ ```
+
+- proving the equality of two booleans:
+
+ ```
+ apply/idP/idP.
+ ```
+
+### congr in hypothesis:
+
+- My goal is of the form
+
+ ```
+ a = b -> P
+ ```
+
+ I'd like to transform it as
+
+ ```
+ f a = f b -> P
+ ```
+
+ This is achieved by
+
+ ```
+ move/(congr1 f).
+ ```


  • [ssreflect] Contributing to the wiki, Florent Hivert, 03/02/2016

Archive powered by MHonArc 2.6.18.

Top of Page