Skip to Content.
Sympa Menu

ssreflect - RE: [ssreflect] bigop in abelian subsets

Subject: Ssreflect Users Discussion List

List archive

RE: [ssreflect] bigop in abelian subsets


Chronological Thread 
  • From: Georges Gonthier <>
  • To: Florent Hivert <>, "" <>
  • Cc: Thibaut Benjamin <>
  • Subject: RE: [ssreflect] bigop in abelian subsets
  • Date: Mon, 18 Apr 2016 16:37:50 +0000
  • Accept-language: en-GB, en-US
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None ; spf=Pass ; spf=Pass
  • Ironport-phdr: 9a23:irgKBRSpVk1BdF6GAIbXT3iMo9psv+yvbD5Q0YIujvd0So/mwa65YRSN2/xhgRfzUJnB7Loc0qyN4/CmBzZLuM7Z+Fk5M7VyFDY9wf0MmAIhBMPXQWbaF9XNKxIAIcJZSVV+9Gu6O0UGUOz3ZlnVv2HgpWVKQka3CwN5K6zPF5LIiIzvjqbpq82VPV8D3WLlKZpJbzyI7izp/vEMhoVjLqtjgjDomVBvP9ps+GVzOFiIlAz97MrjtLRq8iBXpu5zv5UYCfayV+0CQLdZFDUrNXwurI2u7EGbDFjH2nxJfGERiBdOH0Dl7Q/3RIu55gX+sfBw3jXcHczoQKoocTC47uFlUkmswG0cLCQ0/mXagdBYiblB5ROnvR12hY/SeoCccvRkNOuJZsgASGRFU81NfylaGMa9aZEOBqwAO/xZps/zvQ1dgwG5AFyDCeT1xTJTzlDx27E60uk7WVXJ2wo8H9MDqlzRrd7vM7wVX/zzx67Nm2aQJ8hK0CvwvdCbOisqpuuBCPcpKZLc
  • Spamdiagnosticmetadata: NSPM
  • Spamdiagnosticoutput: 1:23

Dear Florent,
The most comfortable to do this is to use the facilities provided by
finmodule.v for injecting elements of an abelian group A into a finite
(Z-)module. The fmval projection out maps sums in fmod_of abelA (where ableA
: abelian A) to group products, so you can comfortably do all your algebra
with full ssralg support in the module, then translate back to 'S_n.
Best,
Georges

-----Original Message-----
From:


[mailto:]
On Behalf Of Florent Hivert
Sent: 18 April 2016 16:59
To:

Cc: Thibaut Benjamin
<>
Subject: [ssreflect] bigop in abelian subsets

Dear all,

I'm working in 'S_n which is a non abelian groups. I have a set A of element
of 'S_n which I know is abelian. I'd like use rewriting bigop lemmas such as

Lemma big_setD1 a A F : a \in A ->
\big[aop/idx]_(i in A) F i = aop (F a) (\big[aop/idx]_(i in A :\ a) F i).

to expression such as

\prod_(s \in A) s

However big_setD1 requires a Monoid.com_law. Commutation is only valid in the
subgroup <<A>> generated by A. Is there an easy way to localize the product
in <<A>> to use commutation ?

Best,

Florent



Archive powered by MHonArc 2.6.18.

Top of Page