Subject: Ssreflect Users Discussion List
List archive
- From: Georges Gonthier <>
- To: Florent Hivert <>, "" <>
- Cc: Thibaut Benjamin <>
- Subject: RE: [ssreflect] bigop in abelian subsets
- Date: Mon, 18 Apr 2016 16:37:50 +0000
- Accept-language: en-GB, en-US
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None ; spf=Pass ; spf=Pass
- Ironport-phdr: 9a23:irgKBRSpVk1BdF6GAIbXT3iMo9psv+yvbD5Q0YIujvd0So/mwa65YRSN2/xhgRfzUJnB7Loc0qyN4/CmBzZLuM7Z+Fk5M7VyFDY9wf0MmAIhBMPXQWbaF9XNKxIAIcJZSVV+9Gu6O0UGUOz3ZlnVv2HgpWVKQka3CwN5K6zPF5LIiIzvjqbpq82VPV8D3WLlKZpJbzyI7izp/vEMhoVjLqtjgjDomVBvP9ps+GVzOFiIlAz97MrjtLRq8iBXpu5zv5UYCfayV+0CQLdZFDUrNXwurI2u7EGbDFjH2nxJfGERiBdOH0Dl7Q/3RIu55gX+sfBw3jXcHczoQKoocTC47uFlUkmswG0cLCQ0/mXagdBYiblB5ROnvR12hY/SeoCccvRkNOuJZsgASGRFU81NfylaGMa9aZEOBqwAO/xZps/zvQ1dgwG5AFyDCeT1xTJTzlDx27E60uk7WVXJ2wo8H9MDqlzRrd7vM7wVX/zzx67Nm2aQJ8hK0CvwvdCbOisqpuuBCPcpKZLc
- Spamdiagnosticmetadata: NSPM
- Spamdiagnosticoutput: 1:23
Dear Florent,
The most comfortable to do this is to use the facilities provided by
finmodule.v for injecting elements of an abelian group A into a finite
(Z-)module. The fmval projection out maps sums in fmod_of abelA (where ableA
: abelian A) to group products, so you can comfortably do all your algebra
with full ssralg support in the module, then translate back to 'S_n.
Best,
Georges
-----Original Message-----
From:
[mailto:]
On Behalf Of Florent Hivert
Sent: 18 April 2016 16:59
To:
Cc: Thibaut Benjamin
<>
Subject: [ssreflect] bigop in abelian subsets
Dear all,
I'm working in 'S_n which is a non abelian groups. I have a set A of element
of 'S_n which I know is abelian. I'd like use rewriting bigop lemmas such as
Lemma big_setD1 a A F : a \in A ->
\big[aop/idx]_(i in A) F i = aop (F a) (\big[aop/idx]_(i in A :\ a) F i).
to expression such as
\prod_(s \in A) s
However big_setD1 requires a Monoid.com_law. Commutation is only valid in the
subgroup <<A>> generated by A. Is there an easy way to localize the product
in <<A>> to use commutation ?
Best,
Florent
- [ssreflect] bigop in abelian subsets, Florent Hivert, 04/18/2016
- Re: [ssreflect] bigop in abelian subsets, Emilio Jesús Gallego Arias, 04/18/2016
- Re: [ssreflect] bigop in abelian subsets, Emilio Jesús Gallego Arias, 04/18/2016
- RE: [ssreflect] bigop in abelian subsets, Georges Gonthier, 04/18/2016
- RE: [ssreflect] bigop in abelian subsets, Georges Gonthier, 04/19/2016
- Re: [ssreflect] bigop in abelian subsets, Florent Hivert, 04/19/2016
- RE: [ssreflect] bigop in abelian subsets, Georges Gonthier, 04/19/2016
- Re: [ssreflect] bigop in abelian subsets, Emilio Jesús Gallego Arias, 04/18/2016
Archive powered by MHonArc 2.6.18.