Skip to Content.
Sympa Menu

ssreflect - Re: [ssreflect] Mathematical Components for Quantum Computing

Subject: Ssreflect Users Discussion List

List archive

Re: [ssreflect] Mathematical Components for Quantum Computing


Chronological Thread 
  • From: Bas Spitters <>
  • To: Cyril <>
  • Cc: Robert Rand <>, Ssreflect-mailinglist <>
  • Subject: Re: [ssreflect] Mathematical Components for Quantum Computing
  • Date: Tue, 12 Sep 2017 09:29:05 +0100
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None ; spf=Pass ; spf=None
  • Ironport-phdr: 9a23:nKckShSUfueTeXcjY8M3Th6wytpsv+yvbD5Q0YIujvd0So/mwa67bReN2/xhgRfzUJnB7Loc0qyN7PCmBDRIyK3CmU5BWaQEbwUCh8QSkl5oK+++Imq/EsTXaTcnFt9JTl5v8iLzG0FUHMHjew+a+SXqvnY6Uy/yPgttJ+nzBpWaz4Huj7jzqNXvZFBjlSC8ZfsmJwSsrAGXvc4WjI1KK6AryxKPrGEeKMpMwmY9D1uI1y3k59us8YR4u3Ba/ftn6IhbSaTmY6kiVpRXCT0nNyY+48i95kqLdheG+nZJCjZeqRFPGQWQqUiiBpo=

Hi Cyril, Robert,

With better integration of ssr in Coq. Can we now hope to run quantum
algorithms based on CoqEAL technology?
https://github.com/CoqEAL/CoqEAL

Best,

Bas

On Tue, Sep 12, 2017 at 8:22 AM, Cyril
<>
wrote:
> Hi,
>
> On 12/09/2017 00:32, Robert Rand wrote:
>>
>> I don't know if there's any definition of conjugate transpose for matrices
>> containing closedFieldTypes. (I've been able to define conj_trmx for
>> 'M[algC] - unfortunately, closedFieldType doesn't seem to have an associate
>> conjugate operation?) We would then need some algebraic identities
>> involving
>> conjugate transpose and Kronecker products, plus the basic quantum
>> matrices.
>
>
> There is an upcomming generalization of numClosedFieldTypes (available only
> in the development version until now, but soon to be released) that contains
> conjugation.
> I used it in a development to prove the spectral theorem for normal
> operators:
> https://github.com/CohenCyril/spectral/blob/master/theories/spectral.v
>
> Best,
> --
> Cyril



Archive powered by MHonArc 2.6.18.

Top of Page