Subject: Ssreflect Users Discussion List
List archive
- From: Assia Mahboubi <>
- To: ,
- Cc: Marie Kerjean <>
- Subject: [ssreflect] Linear subspaces, classically
- Date: Tue, 29 Jan 2019 17:41:41 +0100
- Autocrypt: ; keydata= xsFNBFRwdNcBEACayG+RJjOUz7A9KI4UJZQ4rF53F/QbuWsVwxs+HnFaMHlGA+dyL41hOe14 B+4w50e2jHy6KaBKLP4HFVZpJKpWQsxRmP6vREpbHziF1aNNgoQAER1iriqOiNNTZG8Nbvre ve4BwVHBmbblDvqfXvHdBh35KG//kwYCwAz2g05FWNKe7OZhrQ0wjsdh9p9rSm9mSgL4jFIH 7FxpFw3I20jr+qlTXUyFHLXVjFZnxhznOGa8Kwp3o+UfkjRNUd8bBEbz+jtz1XHTbmDbQRrt msUNozyryiu2mWMt26fJZbSrk6fR/IV/y0XoTe6Uz0o2GtnjeXmCFxe7DwZtwVrina90+MuY okXmKVmv0JVlP3ic1m+GDdF0RNTh0r9w666YUmhebjgwR/3I7uc2JLHJCM9LulnQWx6aVJhH WsELeu5hLXgf9judAtZxUc8aZx7l8I4C2UDRbdSBqQTW1zhxdb6B0TCCuiNUqCISXG6xKAqm 9PsU6Ohb7rIal/yDmy4or/IclxRXx9W8WOxJxTZZt43GyK/1hS43UP6fI//V5cVAOilzOLlc iCdWtlHL4xv+gboSAAH7W1GoZyhpGKb0L3U/BhO8tkTtSPQx9d/GflmHxNBiQeccVAtEYIy4 knIrCuetxksGyZ72E9fXE62tJhwoxlCg6JvOEZAEXzHxbVfywwARAQABzShBc3NpYSBNYWhi b3ViaSA8QXNzaWEuTWFoYm91YmlAaW5yaWEuZnI+wsF+BBMBAgAoBQJUcHTXAhsjBQkJZgGA BgsJCAcDAgYVCAIJCgsEFgIDAQIeAQIXgAAKCRBWO2266JVxsV95D/0bWtsjZ1vjuZYkqR0r WVIs2/G7yYMZ24TGO3EAe/VjXkLlIwyQnUTzN29q40m195zJml99BVVrwsZD4gbV+fu2TdTC YKhgRx05IjeGvcwiOYSplrGUHWg2WN+ofBaHPLeugCmKGBIXCpKXoWS79+amIRsaemVyJB9J P6pvrHfjKXtWaL4JRlhycWv+AeuxA9YVbD/lHFdd8uG/uizIXhuammFov39XKQMujrbejNS3 GggU0XE2vsVQa1ERjgjfk64XMxn1wiXQV9KFSbcSHzSiV8i8he/Ho+xEr/ATnS5cOuK8foUf dQS8yoGQwThHMuV+yuG2d1GSnBW9qTR1x7qNf6DAEQYw7XYYfeggB50Rxe7MS2bf8sj5q/4N tB7AyJT1hcdK+v+Pjr2AjVpX6kwLdLSauLcBpp36qYhpidygQDLV3U2+IbjTrEejgHxuOs6r 1iWtMNppoezyP7IbK0wOZ+RwGE1R01blj8geOm/d5QXoRr7SHocnPyq8Jbi15g5JxTZAFuHS UxaW8k+dGsH0wQxuEcF5JTmM+2kv95Wf6W/jueU2oPt3jQnNWtYu+368scJX882tEJTfkhev 7NbXvsWFpTeK9sqftMW/1dSOkcKpHySECmTQVst8jIMLdIPLuRECBGrrzz9Gx+Pwv/MwVDLR lXOoPSK1pmx86bT47M7BTQRUcHTXARAArjgoFHzZMjM6X7AxO4aTMk+feBC5sFokah2TYdXM eDCR4SbUwNDTgBMi7JtKaUgFW4jh1Hj9NiJJHimejixiho+ZIBJdAwz+auJZVX4RL0a9gSxz hCBT6XRNckUjCJyH17ebzGlPQwgeolOJky063nVOkFmcCLInnh0Q0zbEeZ0RzwPlvNMw/F/4 WOhMQwlifIpIG/jREqcCQzNcddCsZSt9FNIGx0vlGEn5B5lvkM02fbN35/BOf/gKDYbjjgjH HJvYyKnNRHyzL6WNzJw+dKtfr1SvZ5Ms5YeY/CXm3/Xxq53MnoT0HGpjoij3o53toTdnV09z euYWlURq5mzcncSQsD+R7hlv5f2gfmDwLYQeDIwljmjVNXHnYaYtWNghiMdR5sIJvKBqB8tu 25WZd9AaqysnNEokuQi6tfbix5Am4W9J2K7CWzNT7c5n/sBbS5OJsGOW66hck7VAhHVsFjxz Wmmy2C2pIx5w3iJzrzGJlI+anaK/XxJowM5td2faiNZ5wWfVj5lkCJeEqRyAT3INz+5zPsin yQ1vU44JU6C4kjsYBhQ+2YnorrWp2ceRqg483gPYdB/d1DPjOt8j4pIqh2vbhkIo+V56owdt /yerQY1Ykn7zLJ3k/jstdXDF7fXQyFrPMpDnvzG0Gyd79jKNW6M+Hf+1wn2Y/j4YDyMAEQEA AcLBZQQYAQIADwUCVHB01wIbDAUJCWYBgAAKCRBWO2266JVxsWnED/sHj5v9vOCvf3jvzqfz qOrBIuku8M6sRPZcZWtfsXote6l8G3cso6qpNzf7LJmEqfBe4kOMwglgs0Q3osYAr7i6Fjid Qbfbx973gorst7tVek7t7i/s+HOsqW29qocNCa0uysinWjlruC/GaLbCWpcRFPWIcMyc9pCR GiHxUhqVIutwD2K0uTIjQDZzISKkZG+hsUedvlm4tS3gmRNWjg4G2xISgyJ0/AAzkP8O7riY jWZ7B1ih0WkKccBYq5BHs/JkKYuIfYww2DxlFuVbWxyi6yLulu3w4J9gNOBzRzBm2S3hggAX FUq1QHdMrTECoSQ/KioDUgcBJ1mqM53r8AgoTUBdKU8OEriGeusNvmOBA++SjQibdQTaNsqS A6m1uCcyIhvmcGHIecS80z5BftC9hEfzGTVepBwF71Qdj1UyrNkouVdRn2tlFsTF72RgMdfl Q4C15ux51RmUL9hGDYoDHFXS2TxV+0keqRsUBN7WKY7ZscTVzoeeLekr98foMXL6cECPCzQ6 d4rv+2mL8653OOcpm3KkZQy7fnmdoqo97RIzOaVo56RvI97zu7w2to4bERdRphZwwMJDv8KE AJq/P7Wp/STs2XD6wnPjGLLFikTvE/ujE5NSS5KVM3M9TdfdYO5gOQ2itiT3DU7J5Wionw4A jk5NNWijOhe6shDkUQ==
- Openpgp: preference=signencrypt
Hello,
Marie Kerjean (cc'd) is working on a formalization of the Hahn-Banach
theorem in functional analysis.
This theorem takes place in real vector spaces of arbitrary (typically
non-finite) dimension, and requires a variant of Zorn, at least the
existence of an ultra-filter for any filter.
Since linear algebra in Mathematical Components is geared towards finite
dimension, Marie is using lmodType in combination with the experimental
(classical) analysis library.
But the formalized theory of lmodTypes available in Mathematical
Components lacks the theory of subspaces needed here.
We would be glad to hear comments/suggestions/feedback on the best
possible way to address this.
More precisely, the theorem we are interested in here is the so-called
analytical form of Hahn Banach:
Let V be a real vector space, and p a convex function V -> R.
Let G be a subspace of V and f a linear form on G such that:
for any x in G, f x <= p x.
Then, there is a linear extension g of f on V such that g is still
bounded by p, i.e.:
for any x in V, g x <= p x.
The proof goes by showing that f can be gradually linearly extended from
G to V, using a choice argument to ensure that the extension reaches V:
- take v in V \ G, and extend f to define it on G + vR (it is possible
because f is bounded by the convex p).
- define the relation <= on pairs (M, g) of a subspace and a linear form
on this set. It is a partial order, and Zorn's lemma provides a maximal
extension (M, g) of (G, f). (M, g) being maximal, M is necessarily V.
It is not entirely clear that subspaces are needed here: in fact we only
need to consider applications that are linear only on a subset (which is
in fact a subspace) of the larger V. Which is somehow a similar topic.
Any suggestion of a related formalization problem?
Many thanks in advance for your input.
Best wishes,
assia and Marie
- [ssreflect] Linear subspaces, classically, Assia Mahboubi, 01/29/2019
- Re: [ssreflect] Linear subspaces, classically, Florian Steinberg, 01/30/2019
- Re: [ssreflect] Linear subspaces, classically, Cyril Cohen, 01/30/2019
- Re: [ssreflect] Linear subspaces, classically, Florian Steinberg, 01/30/2019
Archive powered by MHonArc 2.6.18.