Skip to Content.
Sympa Menu

ssreflect - [ssreflect] Formal power series in mathcomp

Subject: Ssreflect Users Discussion List

List archive

[ssreflect] Formal power series in mathcomp


Chronological Thread 
  • From: Florent Hivert <>
  • To: "" <>
  • Subject: [ssreflect] Formal power series in mathcomp
  • Date: Fri, 13 Sep 2019 10:25:08 +0200
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None ; spf=Pass ; spf=None
  • Ironport-phdr: 9a23:ETOEIRBKdAJj9JqNeEHxUyQJP3N1i/DPJgcQr6AfoPdwSPv9r8bcNUDSrc9gkEXOFd2Cra4d0KyO7OigATVGvc/b9ihaMdRlbFwssY0uhQsuAcqIWwXQDcXBSGgEJvlET0Jv5HqhMEJYS47UblzWpWCuv3ZJQk2sfQV6Kf7oFYHMks+5y/69+4HJYwVPmTGxfa5+IA+5oAnMuMQam5duJ6QswRfNvndEZv5ayGx1KV6NhRrw+tu88Jt++ClMpvwt8NJNX7/ndKoiV7xYCzomM2Ex5ML1sBTIUBWC6HgBXGgIixREGwfK4g30UZf3qSv6q/Fy2DKGMs3sTLA7Qiqt4qF2QxL1kigHNjo58GbKisxsia9QvRysqwBjz4PSfYqYMud1cKHActMAXWdPUMZfWTJcDI2/YIQAE/cOMuhDoonhu1cCsQeyCRW2Ce/xzDJDm3/43bc90+QkCQzI3AggH9UUsHvKqtX1KLoZX+K0zKnW0zrDde9W0ir65YbIdhAhpuuMUqx2ccrN00UhFQLFjkuOpoz/IzOYzeANs3Ka7+Z6W+KvkXcqpgdsqTas3schkpTFipwRx1ze6Cl0woY4KcelREN7e9KoDYdcuieHPIVsWMwiWXtnuCMix70Gp5G7eC8KxYwixxHFavyHd5aH4x3/VOqLJTd4nnNldKixhxao6USgy+v8Wdeo0FtSsyZJjN3BumoQ2xHR6sWLUOZx80e71TqSywzf8uRELlo1larfJZ4h2Lkwlp8LvErDGi/2n1/2g7GQdkU44OSm6eXnYqv4qZ+GK495kQX+Mr4vmsClD+Q4KBACX3KH9uSkyL3j4Ur5Ta1Rjv0tiKnWrp7aJcAFqaGlHw9YyZ0j6ha6Dze+ytsUh3gHLFRfeBKGlYflIV/OIOqrRcu41h63iy1myfTLNaHJB47Xa3nFirboO7d78U9VjgQph5gL/IlOB78FLfnvckrqrpnZCAU4Okq1xfzmAZNzzNVNd3iIB/q3NKTIvFmUrsIuPeSWeMdBljL6MfUj+7jOjGE0g0M1ebOom5UNPiPrVs96KlmUNCK/yuwKFn0H61JnEb7azWaaWDsWXE6cGqIx4jZiVtCjBIbHS5Cxxrib3WG1BM8OPzwUOhW3CX7tMr68dbIUcivCcMt7k3oKT+r5Et5z5VSVrAb/joFfAK/R8ywcu4jk0Ygn4/fS0x8op2V5

Hi there,

I'm seriously considering to start to develop a library for formal power
series in math-comp. First of all, even if it is not necessary, I'm planing to
work on top of mathcomp-analysis to deal with decidability of equality
problems. I've given it a very first try, and I think I need to step back to
build a strategy. I'm currently considering two paths, I'd like to gather
opinion to make my choice:

1 - Define a series as a function nat -> R

Record fpseries := FPSeries { seriesfun : nat -> R }.

pro: one can adapt easily what was done for polynomials in poly.v
pro: might be sufficient for most need
cons: lots of code duplication, only works for univariate power series.

2 - Start by building a generic inverse limit theory :

Record invlim :=
InvLim { types : nat -> Type;
mor : forall n, types n.+1 -> types n }.

showing that if the (types n) are R-algebras and the (mor n) are R-algebra
morphisms, then invlim is canonically an R-algebra.

And apply the theory to truncated polynomials :

Record trunc_polynomial :=
TruncPolynomial {trpoly : {poly R}; _ : (size trpoly <= n)%N}.

pro: all the algebraic relations like associativity are nearly free
pro: one can easily reuse for multivariate or non-commutative series
cons: may be much harder if not overkill

Please feel free to comment and suggest alternative paths.

Best,

Florent



Archive powered by MHonArc 2.6.18.

Top of Page