Subject: Ssreflect Users Discussion List
List archive
- From: BEGAY Pierre-leo <>
- To:
- Subject: [ssreflect] Expected behavior of partition
- Date: Mon, 16 Dec 2019 16:12:05 +0100
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None ; spf=Pass ; spf=Pass
- Ironport-phdr: 9a23:EJZwJBaBADqvnT9BCE4RsZv/LSx+4OfEezUN459isYplN5qZoMm4bnLW6fgltlLVR4KTs6sC17ON9fq4BCdfu96oizMrSNR0TRgLiMEbzUQLIfWuLgnFFsPsdDEwB89YVVVorDmROElRH9viNRWJ+iXhpTEdFQ/iOgVrO+/7BpDdj9it1+C15pbffxhEiCCybL9vIhi6txvdutUWjIdtKKs91AbCr2dVdehR2W5mP0+YkQzm5se38p5j8iBQtOwk+sVdT6j0fLk2QKJBAjg+PG87+MPktR/YTQuS/XQcSXkZkgBJAwfe8h73WIr6vzbguep83CmaOtD2TawxVD+/4apnVAPkhSEaPDM/7WrZiNF/jLhDrRyhuRJx3oDbb52aO/Vjca3QZs8aSGldUspNSyBMGIGxYo0SBOQBJ+ZYqIz9qkMToBWxBAehGOHgwSJSiH/3w6I6yf4hHh/f0AwkAd0Ot2nfodLtNKgJT++1w7PHzDXYYvxI3zf985HEfQw7rv6QXbJ/a8zRxVMhFwPfl1idr5HuMTCN1ukVrmSW4eltWfixh2Mptg19uCWjy8Uth4XTho8YxUjI+CZkzIovJdC1RlR3bcC6HJdKuSyXM417Sd44TW5yoiY10LgGtIa7fCcUzJQnwAbSZOadc4iJ+B3jUvieLSliiH17frK/nA++/lS6xeLgVsm7ylBKojBLktnWrnwN1hrT5dabSvZl40us1zWC2xrN5uxKPEw4j7fXJpwgz7IqlpcevlzPHirsl0X3iK+WeF8k+u+t6+n/erXpvYGTN4BuhQD+KakhhMq/Af8hPgcSRWeU5eS826fl/UHjTrVKlOU6krPFv5DCOcQbuqm5DhdO0oY48RawETmm0NAGknYbMFJIYwmHjojsO1HWOv/0F/a/g1K2kDdq3f/KJLPhAo+eZkTExaz6Z7tz70NX1CI21soa5pROC7hHIfTpW0a3usaLIAU+Nlme7snOOZ1F144EQ2/KBqKeePfKu1KH7/MHLu+XIYQcszb0Lb4r/ai93jcChVYBcPzxjtMsY3eiE6E+ehnLUT/Xmt4EVFwykE8mVuWz1Q+PVyUWbH+5X6s6oD8hWtr/UNXzA7u1ibnE5x+VW51bYmccUQKFC3bhcYjeHfoKc2eZK8RhmzpCW6LzEtZwhyHrjxfzzv9cFsSR/yQZsZz5090sur/ekwp3/jV/D82blW+XHTh5
Hello everyone,
I was trying to prove straightforward lemmas using hypotheses about partition, but did not find the "no overlapping" condition (trivIset) strong enough to do so. I looked at the definition of trivIset
Definition trivIset P := \sum_(B in P) #|B| == #|cover P|.
and I think that multiple occurrences of a set in P are not captured by the sum. This can be sort of checked with the following lemma, that - as far as I understand the usual definition of a set partition - should be false:
From mathcomp
Require Import ssreflect ssrbool eqtype seq ssrfun choice fintype
finset bigop.
(* setT can be partitioned into two copies of itself *)
Lemma partitionF {A : finType} (wit : A) : partition [set [set: A]; setT] setT.
Proof.
apply/and3P;split.
(* cover *)
- rewrite eqEsubset. apply/andP;split;apply/subsetP;
move=>x Hx. apply in_setT.
apply/bigcupP. exists setT.
by apply/set2P;left.
apply Hx.
(* trivIset *)
- apply/trivIsetP.
by move=>x y /set2P [->|->] /set2P [->|->];
unfold negb; rewrite eq_refl.
(* set0 \notin *)
- apply/memPn.
move=>x /set2P [->|->];
apply/set0Pn; exists wit; apply in_setT.
Qed.
(tested in Coq 8.9.1 with mathcomp 1.8.0)
I was then wondering if this was the intended behavior of partition, or if maybe I was missing something.
Thank you in advance,
Pierre-Léo Bégay
PhD student at Orange Labs & Verimag
- [ssreflect] Expected behavior of partition, BEGAY Pierre-leo, 12/16/2019
- Re: [ssreflect] Expected behavior of partition, Florent Hivert, 12/16/2019
- Re: [ssreflect] Expected behavior of partition, Florent Hivert, 12/16/2019
- Re: [ssreflect] Expected behavior of partition, BEGAY Pierre-leo, 12/16/2019
- Re: [ssreflect] Expected behavior of partition, Florent Hivert, 12/16/2019
- Re: [ssreflect] Expected behavior of partition, Georges Gonthier, 12/16/2019
- Re: [ssreflect] Expected behavior of partition, BEGAY Pierre-leo, 12/16/2019
- Re: [ssreflect] Expected behavior of partition, Florent Hivert, 12/16/2019
Archive powered by MHonArc 2.6.18.