Dear Abdelkrim,
I have another question about
stream_line_2. Does the current implementation consider the density
of the vector field? I only find the interface to get density of a point in
the field, but which returns a constant value 1.0.
Thanks!
best regards
dmyan
----- Original Message -----
From:
To:
Sent: Friday, November 16, 2007 12:25
AM
Subject: Re: [cgal-discuss] A question
about streamline demo of CGAL 3.3
Hi,
The right result is shown in the first figure (The
result that the package should produce using the default parameters). The web
demo uses an old and modified version of the package, but produces the correct
results.
In fact, there is a bug in the current version about the
creterion used to stop the integration of the streamlines, precisely when the
length of new introduced segment is checked (the threshold is very large, and
must be reduced) ; This causes the premature end of the streamlines. This
problem doesn't occur in the web demo because the short streamlines are
deleted.
Attached is the fixed version, it will be in the next
release.
dmyan wrote:
Dear CGAL users,
I meet a problem when I run
the demo Stream_lines_2.
The data file "10.vec" is used as input and the
result is "result2.jpg" in attachment.
I also run the demo
Stream_lines_2 of CGAL3.3 and use the same vector filed as
input, but the output is different from the previous demo. The result
image is "result1.jpg" in attachment.
Did anyone meet the same
problem as mine? Thanks very much!
Best regards
dmyan
// Copyright (c) 2005 INRIA Sophia-Antipolis (France). // All
rights reserved. // // This file is part of CGAL (www.cgal.org); you may
redistribute it under // the terms of the Q Public License version
1.0. // See the file LICENSE.QPL distributed with CGAL. // //
Licensees holding a valid commercial license may use this file in //
accordance with the commercial license agreement provided with the
software. // // This file is provided AS IS with NO WARRANTY OF ANY
KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. // // $URL:
svn+ssh:///svn/cgal/trunk/Stream_lines_2/include/CGAL/Stream_lines_2.h
$ // $Id: Stream_lines_2.h 40822 2007-11-07 16:51:18Z ameyer $ //
// // Author(s) : Abdelkrim Mebarki
<>
#ifndef
CGAL_STREAM_LINES_2_H_ #define CGAL_STREAM_LINES_2_H_
#include
<CGAL/basic.h> #include <CGAL/Cartesian.h> #include
<CGAL/Filtered_kernel.h> #include
<CGAL/Delaunay_triangulation_2.h>
#include
<queue> #include <math.h>
#include
<fstream> #include <iostream>
#include
<CGAL/squared_distance_2.h>
#include
<CGAL/streamlines_assertions.h>
CGAL_BEGIN_NAMESPACE
template
<class VectorField_2, class Integrator_2> class
Stream_lines_2 { public: typedef typename
VectorField_2::Vector_field_2
Vector_field_2; typedef typename
VectorField_2::Geom_traits
Geom_traits; typedef typename
VectorField_2::FT
FT; typedef typename
VectorField_2::Point_2
Point_2; typedef typename
VectorField_2::Vector_2
Vector_2; protected: typedef Geom_traits Kernel;
typedef
CGAL::Triangulation_vertex_base_2<Kernel>
Vb; typedef
CGAL::Triangulation_face_base_2<Kernel>
Fb; typedef
CGAL::Triangulation_data_structure_2<Vb,Fb>
TDS; typedef
CGAL::Delaunay_triangulation_2<Kernel,TDS>
DT; typedef typename
DT::Vertex_handle
Vertex_handle; typedef typename
DT::Face_handle
Face_handle; typedef typename
DT::Face_circulator
Face_circulator; typedef typename
DT::Edge_iterator
Edge_iterator; typedef
std::pair<Point_2,FT>
Circle; typedef
CGAL::Quadruple<Vertex_handle,Vertex_handle,Vertex_handle,Circle>
Pq_element;
Pq_element
Biggest_circle; FT distance(const Point_2 & p, const Point_2
& q) { return
sqrt(squared_distance(p, q)); }
int ir;
int il;
Pq_element Pq_element_max_r; Pq_element
Pq_previous_r,Pq_current_r,Pq_next_r; Pq_element
Pq_element_max_l; Pq_element
Pq_previous_l,Pq_current_l,Pq_next_l; public:
DT m_DT;
typedef
std::list<Point_2>
Point_container_2; typedef typename
Point_container_2::iterator
Point_iterator_2; typedef
std::list<std::pair<Point_iterator_2, Point_iterator_2>
>
Iterator_container_2;
Iterator_container_2
iterator_container; typedef
std::list<Vertex_handle>
Vertex_container_2; typedef typename
Iterator_container_2::iterator
Stream_line_iterator_2; typedef
std::list<Point_container_2>
Stream_line_container_2; protected:
Stream_line_container_2
stl_container; class C {
public: bool operator()(const Pq_element &a1, const
Pq_element
&a2) { return a1.fourth.second
< a2.fourth.second ; }
}; std::priority_queue<Pq_element, std::vector<Pq_element>,
C> pq;
int
iOrder_insertion;
FT
fSepStl_seed;
FT
separating_distance;
FT
saturation_ratio;
Point_2
seed_point;
int
samp_step; unsigned int _number_of_lines; Vector_field_2 *
vf_2; Integrator_2 * int_2; public: void
set_separating_distance(FT new_value){separating_distance =
new_value;} void set_saturation_ratio(FT new_value){
saturation_ratio = new_value;} void update()
{ ir = il = 0; //
initialization fSepStl_seed =
separating_distance*saturation_ratio;
m_DT.clear(); Point_2
pPoint; pPoint =
Point_2(min_x-separating_distance,min_y-separating_distance);
m_DT.insert(pPoint); pPoint =
Point_2(min_x-separating_distance,max_y+separating_distance);
m_DT.insert(pPoint); pPoint =
Point_2(max_x+separating_distance,min_y-separating_distance);
m_DT.insert(pPoint); pPoint =
Point_2(max_x+separating_distance,max_y+separating_distance);
m_DT.insert(pPoint); for (int i=(int)
(min_x-separating_distance);i<max_x+(int)
separating_distance;i=i+(int) (fSepStl_seed))
{ pPoint =
Point_2((FT)i,(FT)max_y+separating_distance);
m_DT.insert(pPoint); pPoint =
Point_2((FT)max_x+separating_distance,(FT)i);
m_DT.insert(pPoint); pPoint =
Point_2((FT)i,min_y-separating_distance);
m_DT.insert(pPoint); pPoint =
Point_2(min_x-separating_distance,(FT)i);
m_DT.insert(pPoint); }
_number_of_lines = 0;
place_stream_lines(*vf_2, *int_2,
samp_step);
} protected: void place_stream_lines(const Vector_field_2 &
vector_field_2, const Integrator_2 &
integrator, const int &
sampling_step, const bool & step_by_step = false); bool
get_next_seed_point(FT & distanceg, Point_2 & seed_point_);
FT find_smallest_circle(const Vertex_handle & pVertex_handle);
Vertex_handle insert_point(const Point_2 & pPoint, FT& fDist,bool
bDistanceCalculation); Vertex_handle insert_point(const Point_2
& pPoint, const Face_handle & m_Face_handle, FT&
fDist, bool
bDistanceCalculation); void integrate_streamline(const
Vector_field_2 & vector_field_2, const Integrator_2 &
integrator,
Point_container_2& stl, Point_2& seed_point_, Vertex_container_2&
stl_vertices, const int & sampling_step); void
integrate_forward(const Vector_field_2 & vector_field_2, const
Integrator_2 & integrator,
Point_container_2& stl,Point_2&
seed_point, Vertex_container_2&
stl_vertices, const int & sampling_step); void
integrate_backward(const Vector_field_2 & vector_field_2, const
Integrator_2 & integrator, Point_container_2&
stl, Vertex_container_2&
stl_vertices, const int & sampling_step); void
insert_streamline(const Vector_field_2 & vector_field_2, Point_container_2
stl, Vertex_container_2
stl_vertices); void pq_elements(const Vector_field_2 &
vector_field_2, Vertex_container_2 stl_vertices, int
i, const Vertex_handle &
m_Vertex_handle, int before_end); void
make_iterator(); public: Stream_lines_2(const Vector_field_2
& m_vector_field_2, const Integrator_2 & m_integrator, const
FT & m_separating_distance, const FT &
m_saturation_ratio, const int & sampling_insertion = 0, const bool &
step_by_step = false); bool
continue_next(const Vector_field_2 & vector_field_2, const Integrator_2
& integrator, const int & sampling_step);
Stream_line_iterator_2 begin(); Stream_line_iterator_2
end(); // for visualizing streamlines void
print_stream_lines(std::ofstream & fw); void
print_stream_lines_eps(std::ofstream & fw);
std::list<Point_2> get_pq(); unsigned int number_of_lines() {
return _number_of_lines; } std::list< std::pair<Point_2,
Point_2> > get_tr()
{ std::list< std::pair<Point_2,
Point_2> > _list; Edge_iterator eit =
m_DT.edges_begin(); for (;eit !=
m_DT.edges_end();eit++) { Point_2 p1 =
(*eit).first->vertex(m_DT.ccw((*eit).second))->point();
Point_2 p2 =
(*eit).first->vertex(m_DT.cw((*eit).second))->point();
_list.push_front(std::pair<Point_2, Point_2>(p1, p2));
} return _list; }
std::pair<Point_2, FT>
get_biggest_circle() {
Pq_element m_Pq = Biggest_circle;
std::pair<Point_2, FT> circle(m_Pq.fourth.first,
m_Pq.fourth.second); return
circle; } protected: FT max_x; FT
min_x; FT max_y; FT min_y; protected:
Stream_line_iterator_2 begin_iterator; Stream_line_iterator_2
end_iterator; private: int
number_of_points; };
template <class VectorField_2, class
Integrator_2> Stream_lines_2<VectorField_2,
Integrator_2>::Stream_lines_2(const Vector_field_2 & vector_field_2,
const Integrator_2 & m_integrator, const FT & m_separating_distance,
const FT & m_saturation_ratio, const int & sampling_step, const
bool
&
step_by_step) { separating_distance =
m_separating_distance; saturation_ratio =
m_saturation_ratio; ir = il = 0; // initialization
fSepStl_seed = separating_distance*saturation_ratio; max_x =
vector_field_2.bbox().xmax(); min_x =
vector_field_2.bbox().xmin(); max_y =
vector_field_2.bbox().ymax(); min_y =
vector_field_2.bbox().ymin(); m_DT.clear(); Point_2
pPoint; pPoint =
Point_2(min_x-separating_distance,min_y-separating_distance);
m_DT.insert(pPoint); pPoint =
Point_2(min_x-separating_distance,max_y+separating_distance);
m_DT.insert(pPoint); pPoint =
Point_2(max_x+separating_distance,min_y-separating_distance);
m_DT.insert(pPoint); pPoint =
Point_2(max_x+separating_distance,max_y+separating_distance);
m_DT.insert(pPoint); for (int i=(int)
(min_x-separating_distance);i<max_x+(int)
separating_distance;i=i+(int) (fSepStl_seed))
{ pPoint =
Point_2((FT)i,(FT)max_y+separating_distance);
m_DT.insert(pPoint); pPoint =
Point_2((FT)max_x+separating_distance,(FT)i);
m_DT.insert(pPoint); pPoint =
Point_2((FT)i,min_y-separating_distance);
m_DT.insert(pPoint); pPoint =
Point_2(min_x-separating_distance,(FT)i);
m_DT.insert(pPoint); } _number_of_lines =
0; vf_2 = new Vector_field_2(vector_field_2); int_2 = new
Integrator_2(m_integrator); samp_step = sampling_step;
stl_container.clear(); place_stream_lines(vector_field_2,
m_integrator,
sampling_step, step_by_step); }
template <class VectorField_2,
class Integrator_2> void Stream_lines_2<VectorField_2,
Integrator_2>::place_stream_lines(const Vector_field_2 &
vector_field_2, const Integrator_2 & integrator, const int &
sampling_step, const bool & step_by_step) { seed_point =
Point_2((max_x+min_x)/2.0,(max_y+min_y)/2.0); // the first chosen
point can be not valid FT xrange = max_x - min_x; FT
yrange = max_y - min_y;
while(!vector_field_2.is_in_domain(seed_point))
{ // std::cout << "searching
valid seed point..\n"; FT x = min_x + (FT)
(((FT) std::rand() * xrange)/((FT)
RAND_MAX)); FT y = min_y + (FT) (((FT)
std::rand() * yrange)/((FT) RAND_MAX));
seed_point = Point_2(x, y); } //
std::cout << seed_point << " first seed
point\n"; // std::cout << "creating the
placement..\n"; FT distance = (FT) max_x * (1.0/2.0); bool
b = (distance>fSepStl_seed); // int i=0; if
(!step_by_step)
while(b) { Point_container_2
stl; Vertex_container_2 stl_vertices;
integrate_streamline(vector_field_2, integrator, stl, seed_point,
stl_vertices, sampling_step); insert_streamline(vector_field_2, stl,
stl_vertices); _number_of_lines++; b =
get_next_seed_point(distance,seed_point);
} else {
Point_container_2 stl; Vertex_container_2
stl_vertices;
integrate_streamline(vector_field_2, integrator, stl, seed_point,
stl_vertices, sampling_step);
insert_streamline(vector_field_2, stl,
stl_vertices);
_number_of_lines++; b =
get_next_seed_point(distance,seed_point); }
make_iterator(); } template <class VectorField_2, class
Integrator_2> bool Stream_lines_2<VectorField_2,
Integrator_2>::continue_next(const Vector_field_2 & vector_field_2,
const Integrator_2 & integrator, const int &
sampling_step) { FT distance; Point_container_2
stl; Vertex_container_2 stl_vertices;
integrate_streamline(vector_field_2, integrator, stl, seed_point,
stl_vertices, sampling_step); insert_streamline(vector_field_2, stl,
stl_vertices); _number_of_lines++;
make_iterator(); return
get_next_seed_point(distance,seed_point); }
// get the next seed
point template <class VectorField_2, class Integrator_2> void
Stream_lines_2<VectorField_2,Integrator_2>::integrate_streamline(const
Vector_field_2 & vector_field_2, const Integrator_2 & integrator,
Point_container_2& stl, Point_2& seed_point_,
Vertex_container_2& stl_vertices, const int &
sampling_step) { integrate_forward(vector_field_2, integrator,
stl, seed_point_, stl_vertices, sampling_step);
integrate_backward(vector_field_2, integrator, stl, stl_vertices,
sampling_step); }
template <class VectorField_2, class
Integrator_2> inline typename Stream_lines_2<VectorField_2,
Integrator_2>::FT Stream_lines_2<VectorField_2,
Integrator_2>::find_smallest_circle(const Vertex_handle &
pVertex_handle) { Face_circulator pFace_handle =
m_DT.incident_faces(pVertex_handle); Face_circulator pEnd =
pFace_handle; FT fMin = max_x;
CGAL_For_all(pFace_handle,pEnd)
{ FT fDist =
CGAL::squared_radius(
pFace_handle->vertex(0)->point(),
pFace_handle->vertex(1)->point(),
pFace_handle->vertex(2)->point()) *
4.0; fDist =
sqrt(fDist); if (fDist < fMin)
{ fMin = fDist; }
} return fMin; }
template <class VectorField_2, class
Integrator_2> inline typename Stream_lines_2<VectorField_2,
Integrator_2>::Vertex_handle Stream_lines_2<VectorField_2,
Integrator_2>::insert_point(const Point_2 & pPoint, FT& fDist,bool
bDistanceCalculation) { Vertex_handle pVertex_handle =
m_DT.insert(pPoint); if (bDistanceCalculation)
fDist = find_smallest_circle(pVertex_handle);
else fDist = 0.0; return
(pVertex_handle); }
template <class VectorField_2, class
Integrator_2> inline typename Stream_lines_2<VectorField_2,
Integrator_2>::Vertex_handle Stream_lines_2<VectorField_2,Integrator_2>::insert_point(const
Point_2 & pPoint, const Face_handle & m_Face_handle, FT&
fDist,bool bDistanceCalculation) { Vertex_handle pVertex_handle =
m_DT.insert(pPoint,m_Face_handle); if
(bDistanceCalculation) fDist =
find_smallest_circle(pVertex_handle); else
fDist = 0.0; return (pVertex_handle); }
template <class
VectorField_2, class
Integrator_2> void Stream_lines_2<VectorField_2,
Integrator_2>::integrate_forward(const Vector_field_2 & vector_field_2,
const Integrator_2 & integrator, Point_container_2& stl, Point_2&
seed_point_, Vertex_container_2& stl_vertices, const int &
sampling_step) { int sampling = 0; // sampling step;
int insertion = 0; // insertion order; int insertion_step =
0; Point_container_2 list_of_point; Vertex_container_2
list_of_vertex; number_of_points = 0; Point_2
pPoint1; bool bEnd = false; FT dist; Point_2
new_point = Point_2 (seed_point_.x(), seed_point_.y());
Vertex_handle m_Vertex_handle = insert_point(new_point, dist, true);
stl_vertices.push_front(m_Vertex_handle);
stl.push_front(new_point); number_of_points++; Point_2
old_point = seed_point_; insertion_step = (int)
(((dist)-fSepStl_seed) / (std::max)((FT)
sampling_step,vector_field_2.get_integration_step())); if
(insertion_step < 0) insertion_step = 0; while
(!bEnd) { Point_2
ex_old_point = old_point; old_point =
new_point;
CGAL_streamlines_precondition(vector_field_2.is_in_domain(old_point));
new_point =
integrator(old_point,vector_field_2,true);
bEnd =
!vector_field_2.is_in_domain(new_point);
bEnd = bEnd || (new_point == old_point);/* to review
*/ if(number_of_points > 30)
bEnd = bEnd || ((distance(stl.front(),
stl.back()))<vector_field_2.get_integration_step());
FT dist_ = distance(ex_old_point,new_point);
bEnd = bEnd || dist_ <
0.9*vector_field_2.get_integration_step();
if (!bEnd) { if(sampling !=
sampling_step)
{
stl.push_front(new_point);
number_of_points ++;
sampling++; }
else
{ if (insertion !=
insertion_step) {
stl.push_front(new_point);
number_of_points++;
insertion++;
list_of_point.push_front(new_point);
} else
{
stl.push_front(new_point);
number_of_points++;
list_of_point.push_front(new_point);
list_of_point.pop_front(); m_Vertex_handle =
insert_point(new_point, stl_vertices.front()->face(), dist,
true); while ((dist <=
separating_distance)&&(!list_of_point.empty()))
{
m_DT.remove(m_Vertex_handle);
for (int i=0;i<=sampling_step;i++){
stl.pop_front();
number_of_points--;}
new_point =
list_of_point.front();
list_of_point.pop_front();
m_Vertex_handle = insert_point(new_point, stl_vertices.front()->face(),
dist,true);
} // adaptive insertion order
coefficient insertion_step = (int)
(((dist)-fSepStl_seed)
/
(std::max)((FT)
sampling_step,vector_field_2.get_integration_step()));
if (insertion_step < 0) insertion_step =
0;
list_of_vertex.push_front(m_Vertex_handle);
(bEnd) =
(((bEnd))||(dist<separating_distance));
while (!list_of_point.empty())
{ Point_2 p =
list_of_point.front();
m_Vertex_handle = insert_point(p, stl_vertices.front()->face(), dist,
false);
list_of_vertex.push_front(m_Vertex_handle);
list_of_point.pop_front();
}
while(!list_of_vertex.empty())
{
stl_vertices.push_front(list_of_vertex.front());
list_of_vertex.pop_front();
} insertion = 0;
} sampling =
0; }
} else { if
(!list_of_point.empty())
{ new_point =
list_of_point.front();
list_of_point.pop_front();
Vertex_handle m_Vertex_handle = insert_point(new_point, dist,
true); while ((dist <=
separating_distance)&&(!list_of_point.empty()))
{
m_DT.remove(m_Vertex_handle); for (int
i=0;i<=sampling_step;i++)
{
stl.pop_front();
number_of_points--;
} new_point =
list_of_point.front();
list_of_point.pop_front(); m_Vertex_handle =
insert_point(new_point, stl_vertices.front()->face(), dist,
true); }
insertion_step = (int) (((dist)-fSepStl_seed) /
(std::max)((FT)
sampling_step,vector_field_2.get_integration_step()));
if (insertion_step < 0) insertion_step =
0; (bEnd) =
(((bEnd))||(dist<separating_distance));
} while
(!list_of_point.empty())
{ Point_2 p =
list_of_point.front();
m_Vertex_handle = insert_point(p, stl_vertices.front()->face(), dist,
false);
list_of_vertex.push_front(m_Vertex_handle);
list_of_point.pop_front();
}
while(!list_of_vertex.empty())
{
stl_vertices.push_front(list_of_vertex.front());
list_of_vertex.pop_front(); }
} } }
template <class VectorField_2, class
Integrator_2> void Stream_lines_2<VectorField_2,
Integrator_2>::integrate_backward(const Vector_field_2 &
vector_field_2, const Integrator_2 & integrator, Point_container_2&
stl, Vertex_container_2& stl_vertices, const int &
sampling_step) { int sampling = 0; // sampling step;
int insertion = 0; // insertion order; int insertion_step =
0; Point_container_2 list_of_point; Vertex_container_2
list_of_vertex; Point_2 pPoint1; bool bEnd =
false; FT dist; Point_2 new_point = Point_2
(stl.back().x(),stl.back().y()); // to not have duplicate points in
the streamline stl.pop_back(); Vertex_handle
m_Vertex_handle = insert_point(new_point, stl_vertices.back()->face(),
dist,true); stl_vertices.push_back(m_Vertex_handle);
stl.push_back(new_point); number_of_points++; Point_2
old_point = new_point; while (!bEnd)
{ Point_2 ex_old_point =
old_point; old_point =
new_point; std::pair<Vector_2, FT>
field_vector;
CGAL_streamlines_precondition(vector_field_2.is_in_domain(old_point));
new_point =
integrator(old_point,vector_field_2,false);
bEnd =
!vector_field_2.is_in_domain(new_point); FT
dist_ = distance(ex_old_point,new_point);
bEnd = bEnd || dist_ < 0.9*vector_field_2.get_integration_step() ||
(new_point == old_point);/* to review */
if(number_of_points > 30) bEnd = bEnd || ((distance(stl.front(),
stl.back()))<vector_field_2.get_integration_step());
// bEnd = bEnd || (number_of_points >
3000); if (!bEnd)
{ if(sampling !=
sampling_step)
{
stl.push_back(new_point);
number_of_points ++;
sampling++; }
else
{ if (insertion !=
insertion_step) {
stl.push_back(new_point);
number_of_points++;
insertion++;
list_of_point.push_back(new_point);
} else
{
stl.push_back(new_point);
number_of_points++;
list_of_point.push_back(new_point);
list_of_point.pop_back(); m_Vertex_handle =
insert_point(new_point, stl_vertices.back()->face(),
dist,true); while ((dist <=
separating_distance)&&(!list_of_point.empty()))
{
m_DT.remove(m_Vertex_handle);
for (int i=0;i<=sampling_step;i++)
{
stl.pop_back();
number_of_points--;
} new_point =
list_of_point.back();
list_of_point.pop_back();
m_Vertex_handle = insert_point(new_point, stl_vertices.back()->face(),
dist,true);
} // adaptive insertion order
coefficient insertion_step = (int)
(((dist)-fSepStl_seed) /
(std::max)((FT)
sampling_step,vector_field_2.get_integration_step()));
if (insertion_step < 0) insertion_step =
0;
list_of_vertex.push_back(m_Vertex_handle);
(bEnd) =
(((bEnd))||(dist<separating_distance));
while (!list_of_point.empty())
{ Point_2 p =
list_of_point.back();
m_Vertex_handle = insert_point(p, stl_vertices.back()->face(), dist,
false);
list_of_vertex.push_front(m_Vertex_handle);
list_of_point.pop_back();
}
while(!list_of_vertex.empty())
{
stl_vertices.push_back(list_of_vertex.back());
list_of_vertex.pop_back();
} insertion = 0;
} sampling =
0; }
} else { if
(!list_of_point.empty())
{ new_point =
list_of_point.back();
list_of_point.pop_back();
Vertex_handle m_Vertex_handle = insert_point(new_point,
stl_vertices.back()->face(), dist,
true); while ((dist <=
separating_distance)&&(!list_of_point.empty()))
{
m_DT.remove(m_Vertex_handle); for (int
i=0;i<=sampling_step;i++)
{
stl.pop_back();
number_of_points--;
} new_point =
list_of_point.back();
list_of_point.pop_back(); m_Vertex_handle =
insert_point(new_point, stl_vertices.back()->face(), dist,
true); }
// adaptive insertion order
coefficient insertion_step
= (int) (((dist)-fSepStl_seed) /
(std::max)((FT)
sampling_step,vector_field_2.get_integration_step()));
if (insertion_step < 0) insertion_step =
0;
//
list_of_vertex.push_front(m_Vertex_handle);
(bEnd) =
(((bEnd))||(dist<separating_distance));
} while
(!list_of_point.empty())
{ Point_2 p =
list_of_point.back();
m_Vertex_handle = insert_point(p, stl_vertices.back()->face(), dist,
false);
list_of_vertex.push_back(m_Vertex_handle);
list_of_point.pop_back();
}
while(!list_of_vertex.empty())
{
stl_vertices.push_back(list_of_vertex.back());
list_of_vertex.pop_back(); }
} } }
template <class VectorField_2, class
Integrator_2> inline void Stream_lines_2<VectorField_2,
Integrator_2>:: insert_streamline(const Vector_field_2 &
vector_field_2, Point_container_2 stl,
Vertex_container_2
stl_vertices) { stl_container.push_back(stl);
Vertex_handle m_Vertex_handle = NULL; int i = 1; unsigned
int size_ = (int) (stl_vertices.size()); ir = il = 0;
while (!stl_vertices.empty())
{ pq_elements(vector_field_2, stl_vertices,
i, m_Vertex_handle, size_); m_Vertex_handle
= stl_vertices.front();
stl_vertices.pop_front();
i++; } }
template <class VectorField_2,
class Integrator_2> void Stream_lines_2<VectorField_2,
Integrator_2>:: pq_elements(const Vector_field_2 & vector_field_2,
Vertex_container_2 stl_vertices, int i, const
Vertex_handle & m_Vertex_handle, int size_) { if ((i!=0)
&& (i!=(size_))){// &&
(std::div(i,10).rem!=0)){ Vertex_handle pVertex_handle =
stl_vertices.front(); Face_handle
pFace_handle; int iIndex;
if
(m_DT.is_edge(pVertex_handle,m_Vertex_handle,pFace_handle,iIndex))
{ Point_2 p0 = pVertex_handle->point(); Point_2 c =
m_DT.circumcenter(pFace_handle); FT fDist =
distance(p0,c); bool b = vector_field_2.is_in_domain(c) &&
(fDist >= fSepStl_seed); if (b)
{ Circle
pCircle(c,fDist); Pq_element m_Pq_element =
Pq_element(
pFace_handle->vertex(0),
pFace_handle->vertex(1),
pFace_handle->vertex(2),
pCircle); if (ir ==
0) {
Pq_previous_r = m_Pq_element; Pq_element_max_r =
m_Pq_element;
ir++;
} else if (ir ==
1) {
Pq_current_r =
m_Pq_element;ir++;
}
else {
Pq_next_r = m_Pq_element; if
(Pq_element_max_r.fourth.second <=
Pq_next_r.fourth.second) Pq_element_max_r =
Pq_next_r; if
((Pq_current_r.fourth.second>=Pq_previous_r.fourth.second)
&&(Pq_current_r.fourth.second>=Pq_next_r.fourth.second))
{
pq.push(Pq_current_r);
} Pq_previous_r = Pq_current_r;
Pq_current_r = Pq_next_r;
ir++; }
} p0 =
pFace_handle->neighbor(iIndex)->vertex(0)->point(); c =
m_DT.circumcenter(pFace_handle->neighbor(iIndex)); fDist =
distance(p0,c); b = vector_field_2.is_in_domain(c) && (fDist
>= fSepStl_seed); if (b)
{ Circle
pCircle(c,fDist); Pq_element m_Pq_element =
Pq_element(
pFace_handle->neighbor(iIndex)->vertex(0),
pFace_handle->neighbor(iIndex)->vertex(1),
pFace_handle->neighbor(iIndex)->vertex(2),
pCircle); if (il ==
0) {
Pq_previous_l = m_Pq_element; Pq_element_max_l =
m_Pq_element;
il++;
} else if (il ==
1) {
Pq_current_l =
m_Pq_element;il++;
}
else {
Pq_next_l = m_Pq_element; if
(Pq_element_max_l.fourth.second <= Pq_next_l.fourth.second)
Pq_element_max_l =
Pq_next_l; if
((Pq_current_l.fourth.second>=Pq_previous_l.fourth.second)
&&(Pq_current_l.fourth.second>=Pq_next_l.fourth.second))
{
pq.push(Pq_current_l);
} Pq_previous_l = Pq_current_l;
Pq_current_l = Pq_next_l;
il++; }
} } if ((ir+il ==
(int) size_-2)&&(size_>2))
{ pq.push(Pq_element_max_l);
pq.push(Pq_element_max_r); }
} else{ Vertex_handle pVertex_handle =
stl_vertices.front(); Face_circulator pFace_handle =
m_DT.incident_faces(pVertex_handle); Face_circulator
pEnd = pFace_handle;
CGAL_For_all(pFace_handle,pEnd) {
Point_2 p0 = pFace_handle->vertex(0)->point(); Point_2 c =
m_DT.circumcenter(pFace_handle); bool b =
vector_field_2.is_in_domain(c); if (b){ FT
fDist = distance(p0,c); if (fDist >=
fSepStl_seed)
{ Circle
pCircle(c,fDist); Pq_element
m_Pq_element =
Pq_element(
pFace_handle->vertex(0),
pFace_handle->vertex(1),
pFace_handle->vertex(2),
pCircle);
pq.push(m_Pq_element); }
} } } }
// get the next
seed point template <class VectorField_2, class
Integrator_2> inline bool Stream_lines_2<VectorField_2,
Integrator_2>::get_next_seed_point(FT
&
distance, Point_2 & seed_point_) { Vertex_handle v0, v1, v2;
Face_handle fr; bool b0,b; Pq_element
m_Pq_element; do{
CGAL_assertion(!pq.empty()); m_Pq_element =
pq.top(); v0 = m_Pq_element.first;
v1 = m_Pq_element.second; v2 =
m_Pq_element.third; distance =
m_Pq_element.fourth.second;
pq.pop(); b0 =
m_DT.is_face(v0,v1,v2,fr); if
(b0){ seed_point_ =
m_Pq_element.fourth.first;} b = (!pq.empty());
}while ((b)&&(!b0)); Biggest_circle =
m_Pq_element; return b; } template <class
VectorField_2, class Integrator_2> typename
Stream_lines_2<VectorField_2,
Integrator_2>::Stream_line_iterator_2 Stream_lines_2<VectorField_2,
Integrator_2>::begin() { return
begin_iterator; }
template <class VectorField_2, class
Integrator_2> typename Stream_lines_2<VectorField_2,
Integrator_2>::Stream_line_iterator_2 Stream_lines_2<VectorField_2,
Integrator_2>::end() { return
end_iterator; }
template <class VectorField_2, class
Integrator_2> inline void Stream_lines_2<VectorField_2,
Integrator_2>::make_iterator() {
iterator_container.clear(); for(typename
Stream_line_container_2::iterator
begin=stl_container.begin();
begin!=stl_container.end();begin++)
{ std::pair<Point_iterator_2,
Point_iterator_2> iterator_pair((*begin).begin(),
(*begin).end());
iterator_container.push_front(iterator_pair);
} begin_iterator = iterator_container.begin();
end_iterator = iterator_container.end(); }
// output an eps
file template <class VectorField_2, class
Integrator_2> void Stream_lines_2<VectorField_2,
Integrator_2>::print_stream_lines_eps(std::ofstream &
fw) { typename Stream_line_container_2::iterator it;
Stream_line_container_2 stl_container_temp = stl_container; fw
<< "%!PS-Adobe-2.0 EPSF-2.0\n"; fw << "%%BoundingBox: 0
0" << " " << max_x - min_x << " " << max_y - min_y
<< "\n"; fw << "gsave\n"; fw << "/L
{moveto lineto stroke} bind def\n"; fw << 0.5 << "
setlinewidth\n"; fw << 0.0 << " " << 0.0 <<
" " << 0.0 << " setrgbcolor\n";
for(it=stl_container_temp.begin(); it!=stl_container_temp.end();
++it) { typename
Point_container_2::iterator begin_point_iterator =
(*it).begin(); typename
Point_container_2::iterator end_point_iterator =
(*it).end(); FT
i_prec = (*begin_point_iterator).x() -
min_x; FT j_prec =
(*begin_point_iterator).y() - min_y;
begin_point_iterator++;
FT i ,
j;
for(;begin_point_iterator!=end_point_iterator;begin_point_iterator++)
{ Point_2 p =
*begin_point_iterator; i = p.x() -
min_x; j = p.y() - min_y; fw
<< i_prec << " " << j_prec << " " << i <<
" " << j << " L\n"; i_prec =
i; j_prec = j; }
} fw << "grestore\n"; fw <<
"showpage\n"; fw.close(); }
// output an stl
file template <class VectorField_2, class Integrator_2> void
Stream_lines_2<VectorField_2,
Integrator_2>::print_stream_lines(std::ofstream & fw) {
typename Stream_line_container_2::iterator it;
Stream_line_container_2 stl_container_temp = stl_container; fw
<< max_x - min_x << " " << max_y - min_y <<
"\n"; fw << stl_container.size() << "\n";
for(it=stl_container_temp.begin(); it!=stl_container_temp.end();
++it) { fw <<
(*it).size() << "\n"; typename
Point_container_2::iterator begin_point_iterator =
(*it).begin(); typename
Point_container_2::iterator end_point_iterator =
(*it).end(); FT i ,
j;
for(;begin_point_iterator!=end_point_iterator;begin_point_iterator++){
Point_2 p = *begin_point_iterator; i = p.x() - min_x; j =
p.y() - min_y; fw << i << " " << j <<
"\n"; } }
fw.close(); }
template <class VectorField_2, class
Integrator_2> std::list<typename Stream_lines_2<VectorField_2,
Integrator_2>::Point_2> Stream_lines_2<VectorField_2,
Integrator_2>::get_pq() { std::list<Point_2>
_list; std::priority_queue<Pq_element,
std::vector<Pq_element>, C> pq_temp; pq_temp =
pq; while (!pq_temp.empty())
{ Pq_element m_Pq_element =
pq_temp.top(); Vertex_handle v0 =
m_Pq_element.first; Vertex_handle v1 =
m_Pq_element.second; Vertex_handle v2 =
m_Pq_element.third;
pq_temp.pop(); Face_handle
fr; bool b0 =
m_DT.is_face(v0,v1,v2,fr); Point_2 sdPoint =
m_Pq_element.fourth.first; if (b0)
_list.push_front(sdPoint); } return
_list; }
CGAL_END_NAMESPACE
#endif
|