Subject: CGAL users discussion list
List archive
- From: Giles Puckett <>
- To:
- Subject: [cgal-discuss] Shortest path between 2 points on a triangle mesh?
- Date: Sat, 6 Mar 2021 13:05:37 +1000
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None ; spf=Pass ; spf=None
- Ironport-phdr: 9a23:UWdTtBHK8wyEzevuiNjT151GYnF86YWxBRYc798ds5kLTJ7zocmwAkXT6L1XgUPTWs2DsrQY0ruQ6vi/EjRbqb+681k6OKRWUBEEjchE1ycBO+WiTXPBEfjxciYhF95DXlI2t1uyMExSBdqsLwaK+i764jEdAAjwOhRoLerpBIHSk9631+ev8JHPfglEnjWwba52IRmssAndqssbjYR+Jqs/1xDEvmZGd+NKyG1yOFmdhQz85sC+/J5i9yRfpfcs/NNeXKv5Yqo1U6VWACwpPG4p6sLrswLDTRaU6XsHTmoWiBtIDBPb4xz8Q5z8rzH1tut52CmdIM32UbU5Uims4qt3VBPljjoMOjgk+2/Vl8NwlrpWrgyhqRJiwIDabo+aO/Vica3SZt4aWWhMU9xNWyBdDI6xbY0CBPcBM+ZCqIn9okMDoxq/BQmoGuzv0SJDiGXr3aIm0OQuDx3G3BA9FN8Jv3TUrdH1O7kJUeCt16TIzDTDb/VI1jfh8oTIdA4uoe2WUb1qbMrc0E8iHB7KgVuMs4LqJS+V1vgTvGiB6eptTf+jhm46pgx/oTWix8gihIbUi48VxF3J+it0zZooKdC7TEN2ZcKoHIVNuyybNoZ7RswsTmJotSokzrAItpC1cigMxZ86xBDfc+SKf5aU7h/tTuqcITN1iGh4dL6lmRq+7FSsxvXiWsWozlpGtDdJn9vCu3wXyhDe6NWLRuFg8kqi3TuC0R3Y5PteLkAuj6XbLoYswr4umZoXtkTOBi72l1nujKOPcUUk4fOn5/3mYrX8oZ+cMY91hhj5MqQzhsyzHP40PRYBXmiH5+u8zrvj8lf9QLlQj/02k6/Zv47GJcgBoK62HRNV3pw55BaiFzum0dIYkmcbLF9dZh6Lk4bkN0vOLf38F/uznk6gnCl2y/zaJrHhB4/CLnnHkLfvZ7Z97EtcxRI8zdBe45JbFKoBIOroV0/wtdzYCAE2MxCuz+bhFtp9ypkSVniSAqOBKqPdrUeI5v4zI+mLfIIapDn9JOIh5/L3kHA5mEQdcrW03ZsMc3C1Be9mIkWcYXr0mNgNC2YKvgwkTOzrklKOSzBTZ2zhF547szo0AYbjAYbYTZ22m5SA2j26F9tYfDNoEFeJRFjpc4ifE88RYyGfPtMpxjMFUbW6U6cg1BejqEn8xqYhJ/eCqX5Qjo7qyNUgv76brho17zEhV53AgVHIdHl9myYzfxFz3K17phAnmFaIye1/mPYdFMZU4eIMVRombNjR3/B3Edb7XkTAf9GEVBCgT8ngCCxjFottke9LWF50HpCZtj6GxzCjWuNHlr2NCYBy9K/AmXHsdZ4kmiT2kZI5hlxjefNhcGivh6px7Q/WXtKbkkSfmrrsc6kAmifQpj6O
Hello,
If I have a triangle mesh that is generally smooth and convex, and two points in different triangles on the mesh, is there a way to obtain:
- the geodesic (shortest) path between the points going through the intervening triangles, or
- a fitted polynomial lying closest (in the least-squares sense) to the intervening triangles?
Giles.
- [cgal-discuss] Shortest path between 2 points on a triangle mesh?, Giles Puckett, 03/06/2021
- Re: [cgal-discuss] Shortest path between 2 points on a triangle mesh?, Sebastien Loriot, 03/08/2021
- Re: [cgal-discuss] Shortest path between 2 points on a triangle mesh?, Giles Puckett, 03/08/2021
- Re: [cgal-discuss] Shortest path between 2 points on a triangle mesh?, Sebastien Loriot, 03/08/2021
Archive powered by MHonArc 2.6.19+.