Skip to Content.
Sympa Menu

cgal-discuss - Re: [cgal-discuss] Shortest path between 2 points on a triangle mesh?

Subject: CGAL users discussion list

List archive

Re: [cgal-discuss] Shortest path between 2 points on a triangle mesh?


Chronological Thread 
  • From: Giles Puckett <>
  • To: "Sebastien Loriot ( via cgal-discuss Mailing List)" <>
  • Subject: Re: [cgal-discuss] Shortest path between 2 points on a triangle mesh?
  • Date: Mon, 8 Mar 2021 19:33:10 +1000
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None ; spf=Pass ; spf=None
  • Ironport-phdr: 9a23:IvqFMBJXozkshl44AtmcpTZWNBhigK39O0sv0rFitYgXKv76rarrMEGX3/hxlliBBdydt6sVzbOP6uu5ATdIyK3CmUhKSIZLWR4BhJdetC0bK+nBN3fGKuX3ZTcxBsVIWQwt1Xi6NU9IBJS2PAWK8TW94jEIBxrwKxd+KPjrFY7OlcS30P2594HObwlSizexfLd/IA+roQnMq8UajpZuJro/xxDUvnZGZuNayH9yK1mOhRj8/MCw/JBi8yRUpf0s8tNLXLv5caolU7FWFSwqPG8p6sLlsxnDVhaP6WAHUmoKiBpIAhPK4w/8U5zsryb1rOt92C2dPc3rUbA5XCmp4ql3RBP0jioMKiU0+3/LhMNukK1boQqhpx1hzI7SfIGVL+d1cqfEcd8HWWZNQsNdWipcCY2+coQPFfIMM/tGoYnzp1UArhWwCgejC+zt1jBGiWT73bE43uk7DQ3KwAItEtAIvX/JrNv1LqASUeWtwafJzDXDa+1Z2Szg44bSbxAuvfKMUqxsccrN1EIiEAzFjlSUqYP7JDOVzv8As2ma7+pmS+2vl3QrqwdvrTiz3MsjkJTJi5sTx1vZ+ip33Jw7KsekSE5nf9GkCp1QujmUOoZqQM4sTGFltTo+x7AEpJK3YDUHxpskyhDfd/CLbYeG7w7tWuuTLjl1mHNodbChixqv7USt1vPxWte03ltIqCdOj9fCtncI1xPJ68iHTONw8Vuu2TmV0wDf8OZEIVo7lafdNpUvwaYwm4INvUjfECL6gkX7gauMekk54OSk9uTqb7X+qpOCK4N4lBvyPrksl8GxG+g0LwoDU3WB9eih17Du+Uv0S6hQgPIsiKnWqpXaKNwbpqGnBw9V1Z4u6xejADe+ydgYmmIHI0lcdBKGlYjpPFfOIfDhAfe4nlSsjClny+rYMbzuHpXCMGLDkLH7crZ58UJcyQszzdZB6JJIEL0BJuz8WlPruNPCEx81Kw20w+D5B9Vhzo4SR36DD6GDPK7StVKE/P8jL/ORaIIVuDvxM/0l6OTvjX89l18dZ66p3Z4PZXC3H/RmJ1uWYWH0gtoaEGcKvww+Q/L2iFGYVz5ceWqyU7gm6TEmEI6mF5vMRpixgLyd2ye2BoFZZm9cBVCICHvnaoSEW+wQZyKPOc9hiScJVaOhSo8kzRGhrhX2y7thLurO+y0Xr4jv1NZv576bqRZnvwd5Bc2Gz2CASSlQmXkJQCN+nLt7plZ8zUvF1KxQjPlRFNgV7PRMGhk7PNbXwOV+TtzzQQncZczBbV+nRtSgDnkVT8ktgpVGN01yEtHnghHY1DexGJcUkaaKDdo66PSP8WL2IpNSynLLz+EZklIlT9dTfTmph6py7BD7Bo/Pnlnfkau2M60Bin2evFyfxHaD6RkLGDV7Vr/ICDVGPhOP8IbJo3jaRrrrMowJdwtMzcnecPlLYcWsik5MAfb5P9LPJmWshz32CAaUy6mKZY6semQb0TmbDkUY1QkOry7faVoOQxy5qmebNwRAUEr1ahqwo+h/rn6nCEk500eDch85juvnylsunfWZDsgr8PcBsSYlpS9zGQ/hjdPXDdec4QxsYONVfIFk7Q==

Sounds like just the thing. Thanks!

G.

On 8/03/2021 6:38 pm, Sebastien Loriot ( via cgal-discuss Mailing List) wrote:
Did you see this package?

https://doc.cgal.org/latest/Surface_mesh_shortest_path/index.html#Chapter_Surface_mesh_shortest_path

Best,

Sebastien.

On 3/6/21 4:05 AM, Giles Puckett wrote:
Hello,

If I have a triangle mesh that is generally smooth and convex, and two points in different triangles on the mesh, is there a way to obtain:

- the geodesic (shortest) path between the points going through the intervening triangles, or
- a fitted polynomial lying closest (in the least-squares sense) to the intervening triangles?

Giles.






Archive powered by MHonArc 2.6.19+.

Top of Page