Skip to Content.
Sympa Menu

cgal-discuss - Re: [cgal-discuss] about arc in cgal arrangement

Subject: CGAL users discussion list

List archive

Re: [cgal-discuss] about arc in cgal arrangement


Chronological Thread 
  • From: Efi Fogel <>
  • To:
  • Subject: Re: [cgal-discuss] about arc in cgal arrangement
  • Date: Wed, 9 Jul 2025 12:31:09 +0300
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None ; spf=Pass ; spf=None
  • Ironport-data: A9a23:sYAFQqn6XdKiCPn3dKNMlQ7o5gxFLURdPkR7XQ2eYbSJt16W5oE/e lBvWW31TP+LYRCFDawHYP6x9E0Yy+WhztNkTgpy92liJ54hgZXOVNnCdxuuZHzCI5OZF0g7v s5EMtKdIJ0+EyKD/UugPuDqoHUkhKjRH7ehBL+eYyt8FV4+Fi5+gE0+lrJm09QAbbRVY++ok YqaT5r3ZgT7i2cc3hso1p++RDNTUNXatWpJ7wFla68W5g6OzCVEUc8Ueq/pfiP0HtkET+CzS 7jqweDi9As13T99U4L/yu6Tnm4iG+OJY1DW0hK6f4D433CucwRriv5T2MI0MBoR1nPQ2Ygsl b2hjLToIS8xJKrAhe8BZBdRFiB6LMVu9aTOSZSFmZX7I3buLT21nZ2CMGlsZddForkvUTkSn RAlAGllgi6r17reLI2TEbEEavQLdKHDII4Zs3d8+jDVZd5OaYzDWajD+ehD1z42gM1Udd6GD ybOQWcHgLzoOnWjC39PYH4MtL/AakrXL1W0nGmoSZ8fuAA/+uDePI/Fa7I5cvTSLSlcc93xS mjupwwVCTlCXDCTJKbsHttBSYYjkAuiML/+GoFU+dZ423yY5nE4FScWC2WGu/LosleRUM5mf hl8FioG9cDe9WSuR9j5GgSk+TuK505GHdVXFOI+5UeGza+8DwSxXDBVCG4cLoV47IlvFWZCO lyhx7sFARRivrybTn2Q8p+bqDqzPW4eKmpqiSosF1Bdsoe7+dBo5v7JZvI6V/C7zczHJT+q7 TvNqXYhuJkosvdegs1X+nic3mv0+cmXJuIv3S3cUWuhqw94f4W4fJeA8kne9f8GLYCDT1DHs mJspiSFxOUHDJXIjTDUBetUTOvv6PGCPznRx1VoGvHN6ghB5VaxJqFbwCxVOX1pbPg5YzS4W Fb8sh9osco70GSRUYd7ZIe4CsIPxKfmFMj4Wv28UjaoSsguHONg1HEwDXN8z1zQfF4QfbbT0 Kp3nO6pBHceTL17lX+4HrdHl7AswS86yCXYQpWTI/WbPVi2NSf9pVQtaQTmggUFAEWs/l+9H zF3aZLi9vmneLeiChQ7CKZKRbzwEVA1BIrtt+tcffOZLwxtFQkJUqCMmOJwKtE7z/UJyY8kG 01RvGcImDITYlWXdm23hoxLMu+HsWtX9CJiZHN1Zw7AN4YLMN3+svtFH3fIQVXX3Lc+lKYrH qdtlzSoDfNIRTDKszUbZt+VkWCRXEXDuO56BAL8OGJXV8c4GWTho4a4FiOxrnVmJnTs7qMW/ eb/vj43tLJZFmyO+u6NMKr3lztcfBE1xIpPYqc/CokLIB+3qtc0ckQcTJYfeqkxFPkK/RPCv y7+PPvSjbOlT1YdqYGS3fK3vM2yHvFgH0FXOWDe4PzkfWPZ52evi8sIGuqBYTmXBiu+9bSAd Ndl6aj2EMQGu1JW7Kt6MbJglpwl6/XV+rR18wVDHVfwVWqNNI9OGHe98PN0hvV//YMB4QqSc WCTy+ZeIoSMaZ/EEkZOBQ8Lbdaj9PAzmxvU58sbOE/RuS19puKGdW5wPBC8rjNXA5UoEYEiw MYn4NU37S7mgDUUE9+2tAJm3EXSEW4hCoIMqYM/LLLwrDYS2nVuQMD5GzDnxpOicPBOORQaG SCVj6/8mLhs/ErOXH4tH3zr3+AGp5AxlD1V7V0FNXKbs8Hkg6Ip4Rhv7jgHdARZ4RFZ2eZVO GIwFUlUJ72Lzgh4lvp4QGGgNAFQNiK3onWr5QMyq1TYaE20WkjmDm43Y7+N9X9E1VNsRGFQ+ bXAxVv1VTrvQtrK4RIzfkxYsN3mc81681zTucKgHvndJaIAXxjevvaMa1YL+jzdOuFgoG3cp OJvwvR8Vr2jCw4UvJ8AKte70ZY+dUm6AVJsEN9d+JEHJ2X+QA2J+COvLhmxc/xdJvaR/k6fD ddvF/11VB+/9XivqzwHNJEIOJtxuuAj3/sZW7bRPWVdmaCunjlol5Px9ybFm24gRet1o/s9M o/8czGjEHSaoHlpx0vhidZiAXXhR/Upfyj+0/KR3MRTMqkcocd+dU0W+ZmljUW/aQdI0Uqdg 1LeWvXw0edn97VJo6LtNadmXCCfNtL5UbWzwjCZ6thhQ4vGDpbTilkztFLiAgVxOIkRUfRRk ZCmkob+/GHBjYYMf1HpobuzPIgX2pzqR8tSCNz9E1dClyjbWMPM3QoKy1rlFbN3yuFi9uuVb CrmTvCvdOwlecZXn1xUTCl8LywzKYrKaoXYmCfsiMjUVzY811TcIcKF5E3ZSzhRVhU1Nq3UD i72vPeT5e5kkrlcOS9cB99aLs95BHTBRZoZc8bAsGjEL2uw3XKHlLjQtTshzjDpFki7FN3e0 bydYyOncTGOt7Dsyd1HudZ+pS8sUXR327ExWmk/+NdGrS+wI0BbDOYaMLQAUop1lA6r3r7GR Tj9VkkQIgSjYiZhbjP9/8XFYgeTIscsK+XJDGUl0G3MYhjnGb7aJqVq8xlRxktfexzh/bmBE s4f8HihBSqB6MhlashL78PqnNo94O3Rw08J3kXPk8bSJRI6KpdS3VxDGDt9bwD2I/vvpm7qe 1dsHXtlRXulQ3HfCcxjIn5ZOC8ItQPVkgkHU329/8b9ia66kst71/zNC8Pi2OYibeMLBoI0a 1HZem+v212Si1sv4fYHmtRwjaFNXKfBWoDwKaL4XgQdkp2h8mltbYtIgSMLS9pk4wJFVU/Uk j63+XUlGUCZMwZr1aaLzRkSsYdEOp7W4+olUCakzdMHrfA48zQdUx2jzQa+MI2p7qa67x8eT zAVY0Kc5VaRsVMIYNW4Wusz/jS67QM5TBEokRzEirv9lx6tTClWE7UJP4QSyYdK6HMdrmlLX P/57jj+kb5LmguA2gnlmJESZb0PQ3Lt3Ogco+eBwS+H3edcGG82nxhV51p6ossvbclKZGk8
  • Ironport-hdrordr: A9a23:8PJPTK1y/WhZCdELb+jWOwqjBGskLtp133Aq2lEZdPU1SL3iqy nKpp4mPHDP+VIssR0b6LW90ey7MBHhHP1OgbX5X43SOjUO0VHAROpfBMnZsl7d8kbFh5dgPM lbAtBDIey1I1w/osrz/RWiH8xI+qjhzImYwcnbi1liJDsEV0ii1WtE48Sgf3GeiDMpOXPxLv uh2vY=
  • Ironport-phdr: A9a23:1Y/PChboByHRo8PQGmZRA6L/LTGZ2YqcDmcuAnoPtbtCf+yZ8oj4O wSHvLMx1wSPBd6QsK0d2qL/iOPJZy8p2d65qncMcZhBBVcuqP49uEgNJvDAImDAaMDQUiohA c5ZX0Vk9XzoeWJcGcL5ekGA6ibqtW1aFRrwLxd6KfroEYDOkcu3y/qy+5rOaAlUmTaxe7x/I Ru4oAnLqsUbj4RuJ6gzxxfUpnZDZvhby35vKV+PkBnw4du98oR++CpKofIh8MBAUaT+f6smS LFTESorPWMo6sD1rBfPVQSB6GMTXWkPjBdGDBXL4An1UZntvCT6sPF92DSBMs3tUb80QzWi4 Lx1RxLulSwKKiQ28GDTisx3kaJbvBesrAFxzoLIfI2YMud1caTAc9MHXmpBRtheWDBdAo2ya IsPCvAOPeder4Lgo1cDoh+zCQyqCejyyDFHm2X20LU13OQvEw7I3AIuEdETvnrKsNr4L70SX fyvwaTS0TnPc/Fb1DHg44bIaBAhpvSMUKp/f8rfyEkkCgPLjlKfqYP7OzOey+MAvHaV7+phW +KvjGEnpB91ojW0yccsj5PGhoMRylze6Sp5x4M1KMS+RUVmbtGqDIFeuDuGN4tqXMwiWWdot T44x7EapZK3YCkHxZAkyhPCZfKJc5aF7wzsWuuePTt1hXxoda+7ihuy8kWtyO3yWMmo3FtLr ydLndnCu24C2hHc7MWMV/Vz/kCk2TmV1gDT7PlJLlw7laXBL54t2LkwloAcsUjbBy/2gV/6g 7ORdkUh4uSo8uDnYrLppp+bLYN7lgf+Prwvmsy5G+Q4MxIBU3KV+eSm0rDo4E73QK1Sg/Eoj qXUtIrWKMcbq6KjHgNY05ov5wyiAzqlztgVm2QMIkhfdxKdlYfpPknDIPDmAve7hFShiDJry OrHPr3lG5nNN2TDnKr4cbZz9kJRyxQ/wcpQ55JTDbEBL/bzVVHruNPECR85NhS4w+fhCNpjy oMTQXyDDrOdPa/IslKF5vgjL/SNaYMJojrxNvso6+D2gX88g1AdfK2p3ZUNaHC/G/RrO1uWY XTtgtcPFmcKsRQxTOjxhV2NVD5cfXeyX6Ym6j4nD4KmCJ/PRpqxj7yZwCe7AppWa3haBVCDC 3joc5yIVOoNaCKJPsBhjycEVaO6Ro861RCusRf6xKB9IurV/C0Yr5Pj28Jv6+3djxE+7Tp0A N+F3GGXU250hn8IRyMx3K1nvEBx0liD3rZ/g/JbD9Je//1GXBoiOZ7G0eN6FdP8VBjZc9eMU lmmQ9GmDSgoTtIt3tMCekh9F8ihgxzdxSaqDLgVl7uEBJww7K3QxWT+J8F4y3reyaYhjFgmQ s5XOGO+iaBw+RbdCZLVnkufj6qlaKEc0zTX9Gif1WeApFhWXhZ/X6ndRnAffkXWoMzj6E7eU rGgFKwrMhBZyc6MMqRKasPmjVFBRPr7INrQenq/lWjjTSuO3a6GOYr2Z30GjmKaE1kBiwlV/ HCcNAF4CD3muHPbFDUpFFThZATn/uB67X+6VUQp1BrZUkt6yrCV5hsR0PyAV+sIjPVDozYks zwyHVCn3tuQBcDHvBtkZKwbYNUz5xBM2mvd8gB8JZe9NLsxu1gFbg5LslPyghVrFp1bw49tt 2Iv1AM0KKSC0VoHeSnfxoH1IrSQK2/8+1ekZKfSn13fy92L4bxc1PNtoFrquESlF1Ep7m58+ 9hTyXqVoJvQXyQIVpekf0g2vzZ9qLzeKn0w6YLa0nJhNYG7tzbD35QiA+5zmUXoRMtWLK7RT Fy6KMYdHcX7dL1CczmBaxsFOLoX76soJ4a8cPDA3qe3PeFmlTbgjGJd4Yk73FjfvzFkRLvu2 JAIi+qdwhPBTy312Vqvs87wlo1ATT4XF2u7jyPjAd0ZfbV8KL4CEnzmOMir3pN7jp/pVWRf8 QuuCVII38CkfTKdalX82Utb0kFE6We/l36eyDp52yossrLZ3CHKxLH6cwEbP2dQWGR4pVLlI IzxlsxDGUbxP1Jvmxyi6kL3gaNcocyTNkH1RkFFN2jzJmBmCO6rs6aaJtRI49UuuDlWV+K1Z RabTKT8ql0UyXGrGWwW3z09ezyw3/ex1xVnlGKQKmpyp3vFaIlxwxnY/tnVWf9W2HIPWiB5j TDdAlX0McOu+J2YkJLKs+b2UGzENNUbfCfqw4SPuS+T6mhjABn5lPe225XmHQU8zS7nxoxyT yyb5B34Y4Tty+G7Kbc9JhguVAK6spQiXNguyNhV5tlYw3URi5SL8GBSlG7yNY8ewqfidD8XQ jVNxdfJ4Q/j0UklL3STxou/WG/Op6kpL9S8fG4S3Towqs5QD6LBprFKnCVyrVe8hQ3UaPl52 DwazLF9jRxSy/FMowcrwiiHV/ofE0hWOiPhkzyH6tm/qONcY2PlIvCgkUF5m96mFrSLpApRD W34dpkVFih19sxjMVjI3RUf86ncccLLJZIWvxyQyVLbivRNbYg2nbwMjDZmPmT0uTskzfQ6h Fpgx8PysI+CImRrtKW3Z3wQfjD7Zs0U9Tzppalbl8eSmYuoG91tFy4KU53hUf+zWGhK5LK3a kDXTmV68yfBUbPEVReS8kJns27CH/XJfzmMKX8VwM8jDBiRKUpDgRwFCTAzn5o3DAevl4Tqd EZ04CxU50at8EMdjLI1cUChCiGG9F37D1V8AIKSJxdX8AxYskLcMMjEq/l2Azkd5Jqq6gqEN m2cYQ1MS2APQE2NQV75bdzMrZHN9faVAu2mIr7Ae7KL/KZTWfaGwp2i1qNp+j+NMoOEOXwoX JhZkgJTGGt0HcjUgWBFRiIWmSXCYsqzqxK1+ykxpce6uqejSEfk4o2BDKFXONNk9kWtgKuNA OWXgT5wNTdS0p5foB2AgKhaxlMZjDtiMiW8CblV/zCYV7rew+UERw5ecS54M9FEqr4xzhUYc 9COkcv7j9saxrY0EwsXCwKnwJ34I5xSZTn6bguPBV7XZuvcY2SXhZimO+XkDuQAxORM60/v5 XDCSRKlZnLb0GC3MnLneeBU0HPCZEwY4d7iNEYrUS+5FZrnckHpaYAsy2RnnftswCuNbDBUM CAgIRkV//vAsGUB2KU5QysYsR8HZaGFg3rLtbCGbMtG96I6WGIs0LsLqHUil+kPtX8CHqck3 nCI6IYp+gDuhOCLznAPvANmjDFNicrLuExjPf+c7ZxcQTPe+xlL62yMChMMrt8jC9v1uqkWx MKd3KT0YCxP9d7Z565+T4DdNd6HPXw9MBHoBC+cDQ0LSiSuPH3egEoVme+b93mcpJw34pb2n 59GRrheXV0zXvQUbyYtVMQFO4tyVyg4nKSziccJ4T+nsECUSpwK5NbIUfWdBfipIzGczPFFa xYO3bLkPNETO4n8iCkAIhFxmIXHHVaVXMgY+HUwKF9p5hwTqD4nHjdgviCtIhmg63ISC/Ouy xs/iw8kJP8o6C+p+VA8YFzDuCo3lkA139TjmzGYNjDrf8LSFclbDTT5s08pP9b1WQFwOEe/k 01qMzjJQ5peirJhcSZgjwqW6v4tUbZMCLZJZhMd36Tdf/IzzVFVsTmq32dC7OrBTIJ+zU4kK M726X1H3A1nYZg+Iqmad88rhhBAw6mJuCGvzOU4xgQTcl0M/G2lcykNoEUUN7MiKkJAH8Rp4 A2G3iJfIS0CDqpw5P1t8Uw5NqKLyCeyi9arxWi+MuWeK+WSvG2SzKZgp3s/00oJkw9O+r0ki a8e
  • Ironport-sdr: 686e36eb_zB57wVZnhUSL/XuvZvPH2taFukYjOI+izxgkc65i6t/UAeo CmMhy3jUT9sNesiwcbNMY3Dn56MSYvb14ktLM6g==

Hi Nicklas,

I'm not sure which issue you exactly refer to...

There are several ways to handle those numbers, for example:
Given a rational center c and the square of a radius, you can find a  point with rational coordinates (x,y) exactly on the circle that approximates the exact point p in direction d = (dx, dy) from c, within a certain bound.
There are infinitely many such rational points...
Look at CGAL::rational_rotation_approximation().

If you have an arc of a circle, it would be more efficient in general to use it when constructing an arrangement and using the arrangement for further operations, than constructing an arrangement of segments that approximate the arc.
So I would recommend using the Arr_circle_segment_traits_2. This traits class uses an algebraic number type called CGAL::Sqrt_extension< NT, Root, DifferentExtensionComparable, FilterPredicates >.
It is more efficient than a general algebraic number (e.g., provided by Core) but it is limited. You can try to learn to use it for your needs.

Finally, the (regularized) operations on polygons depend on the 2D Arrangement package. 
More precisely, when performing a Boolean-set operation an arrangement is constructed and manipulated behind the scene.
If you use the Polygon_set_2 construct, you can obtain this arrangement. (Naturally, if you want to change this arrangement, obtain it by value...)

Efi

   ____  _        ____             _
  /_____/_) o    /__________  __  //
 (____ (   (    (    (_/ (_/-(-'_(/
                         _/




On Tue, 8 Jul 2025 at 15:08, Nicklas SB Karlsson <> wrote:
I already solved it and provided some kind of example to show how I did it.

If you want I could provide my code as an example?


It is complemented with pdf file written more or less in the form of a scientific article describing the problem. In short it is intended to calculate paths for control of CNC machine following a more or less arbitrary surface described with lines or cirular arcs with constant tool angle engagement. While simple to calculate tool engamenent following a linear surface it become a little bit more tricky following a circular surface and did not find closed form solution then there is intersections between different shapes. As there is no need for high accuracy until desired shape is reached I therefore decided to use iterative calculations with polygons and follow "exactly" then desired shape is reached.
It is still work in progress since calculation is rather slow and I therefore postponed it until I maybe in future get more time for this. Guess it would be a very nice algotithm to have to calculate tool paths for CNC machines.


Nicklas Karlsson


tis 2025-07-01 klockan 10:10 +0300 skrev Efi Fogel:
Hi Nicklas,

Before we can solve something, we need to know whether there is something to solve and if so, we need to know what to solve.
A minimal program that can be used to reproduce the problem is what we need.
The exact input data can help too.

Efi
   ____  _        ____             _
  /_____/_) o    /__________  __  //
 (____ (   (    (    (_/ (_/-(-'_(/
                         _/




On Mon, 30 Jun 2025 at 23:15, Nicklas SB Karlsson <> wrote:
In attached files I do this for polygon. Have complete program that compile and run if you need?

Did not find any examples so had to struggle a while before I figured how it should be done so guess maybe this help you how to solve your problem.


Nicklas Karlsson


sön 2025-06-22 klockan 17:45 +0800 skrev ж��:
I submitted three straight lines and one circular arc to the CGAL Arrangement, as shown in the left figure. The final calculation result, shown in the right figure, is incorrect. However, if I discretize the arc into line segments, the result becomes correct. so how to do .

卸甲
 




--
You are currently subscribed to cgal-discuss.
To unsubscribe or access the archives, go to
https://sympa.inria.fr/sympa/info/cgal-discuss




Archive powered by MHonArc 2.6.19+.

Top of Page