coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Dimitri Hendriks <Dimitri.Hendriks AT phil.uu.nl>
- To: coq-club AT pauillac.inria.fr
- Subject: how to destruct l:(listn O)?
- Date: Thu, 23 Mar 2000 12:23:44 +0100
Hi,
>From the following definition
Variable A : Set.
Inductive listn : nat->Set :=
niln : (listn O)
| consn : (n:nat)A->(listn n)->(listn (S n)).
one might expect (listn O) to be inhabited by niln only.
In other words (l:(listn O)) l = niln, but how to prove it?
Case analysis on l:(listn O) is not permitted
("Cannot solve a second-order unification problem").
Similarly, I need something like:
(n:nat;l:(listn (S n)))(EX a:A | (EX l':(listn n) | l = (consn n a l')))
Is it provable?
Best regards,
Dimitri
- how to destruct l:(listn O)?, Dimitri Hendriks
- Re: how to destruct l:(listn O)?, Hugo Herbelin
- Re: how to destruct l:(listn O)?, Sylvain BOULM'E
Archive powered by MhonArc 2.6.16.