coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: "TAVERNIER Bertrand" <bertrand.tavernier AT criltechnology.com>
- To: <coq-club AT pauillac.inria.fr>
- Cc: <GANGCHEN5 AT aol.com>
- Subject: [Coq-Club] RE: Coq-club digest, Vol 1 #201 - 1 msg
- Date: Mon, 22 Sep 2003 10:07:04 +0200
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
Hello,
Just try using "Discriminate" for that kind of goal
Sincerly,
~Bertrand Tavernier
-----Message d'origine-----
De :
coq-club-request AT pauillac.inria.fr
[mailto:coq-club-request AT pauillac.inria.fr]
Envoyé : samedi 20 septembre 2003 12:01
À :
coq-club AT pauillac.inria.fr
Objet : Coq-club digest, Vol 1 #201 - 1 msg
Send Coq-club mailing list submissions to
coq-club AT pauillac.inria.fr
To subscribe or unsubscribe via the World Wide Web, visit
http://pauillac.inria.fr/mailman/listinfo/coq-club
or, via email, send a message with subject or body 'help' to
coq-club-request AT pauillac.inria.fr
You can reach the person managing the list at
coq-club-admin AT pauillac.inria.fr
When replying, please edit your Subject line so it is more specific
than "Re: Contents of Coq-club digest..."
Today's Topics:
1. How to prove two constructors are different
(GANGCHEN5 AT aol.com)
--__--__--
Message: 1
From:
GANGCHEN5 AT aol.com
Date: Fri, 19 Sep 2003 15:28:59 EDT
To:
coq-club AT pauillac.inria.fr
Subject: [Coq-Club] How to prove two constructors are different
--part1_125.25b6d868.2c9cb2fb_boundary
Content-Type: text/plain; charset="US-ASCII"
Content-Transfer-Encoding: 7bit
Hello,
Given an inductive definition:
Inductive A : Set := a : A | b : A | c : A.
I want to prove that each pair of two constructors are
different. Here is a proof following the method proposed in the book CoqArt:
Lemma ineq : ~a=b.
Proof.
Unfold not; Intros H; Change ([o:A]Cases o of a => True | _ => False end
b);Rewrite <- H; Trivial.
Qed.
Question:
Are there simpler or general proofs for this problem ?
With the above method, each lemma ~x=y needs a slightly different proof.
Thanks.
gang chen
--part1_125.25b6d868.2c9cb2fb_boundary
Content-Type: text/html; charset="US-ASCII"
Content-Transfer-Encoding: quoted-printable
<HTML><FONT FACE=3Darial,helvetica><BODY BGCOLOR=3D"#ffffff"><FONT style=
=3D"BACKGROUND-COLOR: #ffffff" SIZE=3D2 FAMILY=3D"SANSSERIF"
FACE=3D"Arial"=20=
LANG=3D"0">Hello,<BR>
<BR>
Given an inductive definition:<BR>
<BR>
Inductive A : Set :=3D a : A | b : A | c : A.<BR>
<BR>
I want to prove that each pair of two constructors are<BR>
different. Here is a proof following the method proposed in the book CoqArt:=
<BR>
<BR>
Lemma ineq : ~a=3Db.<BR>
Proof.<BR>
Unfold not; Intros H; Change ([o:A]Cases o of a =3D> True | _ =3D> Fal=
se end b);Rewrite <- H; Trivial.<BR>
Qed.<BR>
<BR>
Question:<BR>
Are there simpler or general proofs for this problem ?<BR>
<BR>
With the above method, each lemma ~x=3Dy needs a slightly different proof.<B=
R>
<BR>
<BR>
Thanks.<BR>
<BR>
gang chen<BR>
</FONT></HTML>
--part1_125.25b6d868.2c9cb2fb_boundary--
--__--__--
--------------------------------------------------------
Bug reports: http://coq.inria.fr/bin/coq-bugs
Archives: http://pauillac.inria.fr/pipermail/coq-club
http://pauillac.inria.fr/bin/wilma/coq-club
Info: http://pauillac.inria.fr/mailman/listinfo/coq-club
End of Coq-club Digest
- [Coq-Club] RE: Coq-club digest, Vol 1 #201 - 1 msg, TAVERNIER Bertrand
Archive powered by MhonArc 2.6.16.