coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Stefan Karrmann <sk AT mathematik.uni-ulm.de>
- To: coq-club AT pauillac.inria.fr
- Subject: [Coq-Club] eta-conversion in Coq?
- Date: Sat, 18 Sep 2004 21:00:13 +0200
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
- Mail-reply-to: <sk AT mathematik.uni-ulm.de>
Hello,
Coq's reference manual mentions eta-conversion only briefly, c.f. chapter
4.3 of it. Is the
Theorem eta_conversion :
forall (A:Type) (B:A->Type) (f:forall x:A,B x),
(fun x:A=>f x) = f.
provable in Coq without additional axioms?
A little bit more general is:
Theorem app_eq :
forall (A:Type) (B:A->Type) (f g:forall x:A,B x),
(forall x:A=>f x=g x) -> f = g.
If this is provable, then eta_conversion is easy to prove:
Lemma eta_conv :
forall (A:Type) (B:A->Type) (f:forall x:A,B x),
(fun x:A=>f x) = f.
Proof.
intros A B f; apply app_eq.
intro x; reflexivity.
Qed.
Regards,
--
Stefan Karrmann
- [Coq-Club] eta-conversion in Coq?, Stefan Karrmann
- <Possible follow-ups>
- Re: [Coq-Club] eta-conversion in Coq?, Alexandre Miquel
Archive powered by MhonArc 2.6.16.