Skip to Content.
Sympa Menu

coq-club - [Coq-Club] eta-conversion in Coq?

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] eta-conversion in Coq?


chronological Thread 
  • From: Stefan Karrmann <sk AT mathematik.uni-ulm.de>
  • To: coq-club AT pauillac.inria.fr
  • Subject: [Coq-Club] eta-conversion in Coq?
  • Date: Sat, 18 Sep 2004 21:00:13 +0200
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
  • Mail-reply-to: <sk AT mathematik.uni-ulm.de>

Hello,

Coq's reference manual mentions eta-conversion only briefly, c.f. chapter
4.3 of it. Is the

Theorem eta_conversion :
   forall (A:Type) (B:A->Type) (f:forall x:A,B x),
   (fun x:A=>f x) = f.

provable in Coq without additional axioms?

A little bit more general is:

Theorem app_eq :
   forall (A:Type) (B:A->Type) (f g:forall x:A,B x),
   (forall x:A=>f x=g x) -> f = g.

If this is provable, then eta_conversion is easy to prove:

Lemma eta_conv :
   forall (A:Type) (B:A->Type) (f:forall x:A,B x),
   (fun x:A=>f x) = f.
Proof.
   intros A B f; apply app_eq.
   intro x; reflexivity.
Qed.

Regards,
-- 
Stefan Karrmann





Archive powered by MhonArc 2.6.16.

Top of Page