coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Benjamin Werner <benjamin.werner AT polytechnique.fr>
- To: Haixing Hu <Haixing.Hu AT imag.fr>
- Cc: robert dockins <robdockins AT fastmail.fm>, Coq Club <coq-club AT pauillac.inria.fr>
- Subject: Re: [Coq-Club] decidable eq on a well-specified type
- Date: Thu, 28 Apr 2005 16:01:46 +0200
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
Hi,
This is not exactly a simplification. Indeed your lemma cannot be proved without axiom in the current version of Coq's type theory. On the other hand, the corresponding propositions over natural numbers (or any type upon which equality is decidable) are provable without further assumptions.
There was a discussion of the case of the predicate < (or <= ) not long ago.
Cheers,
Benjamin
Le 27 avr. 05, à 16:07, Haixing Hu a écrit :
This is an interesting problem. There is another simplified version: how to
prove the floowing lemma?
Lemma single_eq_proof : forall (A : Type) (x : A) (p1 p2 : x = x), p1 = p2.
Quoting robert dockins
<robdockins AT fastmail.fm>:
I'm playing around with well-specified types and tried to prove
something like the following :
Parameter limit:nat.
Definition nat_subset := { n:nat | n < limit }.
Lemma eq_nat_subset_dec : forall x y:nat_subset, {x=y}+{x<>y}.
I've had great difficulties, however. The problem comes down to showing
that two proofs of (x<limit) are equivalent. From the definition of
'le' it seems pretty clear that this is the case. However I run into
problems with second-order unification and the restrictions between the
Prop and Set universes with all the techniques I have tried. Is it
possible to prove a goal like this one without resorting to classic (and
hence proof irrelevance)?
--------------------------------------------------------
Bug reports: http://coq.inria.fr/bin/coq-bugs
Archives: http://pauillac.inria.fr/pipermail/coq-club
http://pauillac.inria.fr/bin/wilma/coq-club
Info: http://pauillac.inria.fr/mailman/listinfo/coq-club
-------------------------------------------------
envoyé via Webmail/IMAG !
--------------------------------------------------------
Bug reports: http://coq.inria.fr/bin/coq-bugs
Archives: http://pauillac.inria.fr/pipermail/coq-club
http://pauillac.inria.fr/bin/wilma/coq-club
Info: http://pauillac.inria.fr/mailman/listinfo/coq-club
- [Coq-Club] decidable eq on a well-specified type, robert dockins
- Re: [Coq-Club] decidable eq on a well-specified type,
Haixing Hu
- Re: [Coq-Club] decidable eq on a well-specified type, Benjamin Werner
- Message not available
- Re: [Coq-Club] decidable eq on a well-specified type, robert dockins
- Re: [Coq-Club] decidable eq on a well-specified type,
robert dockins
- Re: [Coq-Club] decidable eq on a well-specified type, Pierre Letouzey
- Re: [Coq-Club] decidable eq on a well-specified type,
Haixing Hu
Archive powered by MhonArc 2.6.16.