coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Pierre Casteran <pierre.casteran AT labri.fr>
- To: Li-Yang Tan <lytan AT artsci.wustl.edu>
- Cc: coq-club AT pauillac.inria.fr
- Subject: Re: [Coq-Club] the intros tactic and eliminating existential quantifiers
- Date: Sun, 13 Nov 2005 22:39:32 +0100
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
Selon Li-Yang Tan
<lytan AT artsci.wustl.edu>:
Hello,
> Hello,
>
> I have a simple question regarding the intro(s) tactic. Suppose I am
> trying to prove the following implication,
>
> P : Prop
> Q : Prop
> ----------------------------------
> (P /\ (Q /\ R)) -> ((P /\ Q) /\ R)
>
> I can pull to antecedent of the implication into my list of
> hypotheses/assumptions by doing "intros [H1 [H2 H3]]". This is very
> nice, since it saves me from having to do: "intro; elim H; intros; elim
> H0; intros." I believe there is a similar trick for disjunctions, so if
> the antecedent of my implication is say (P /\ (Q \/ R)), I can simply do
> "intros [H1 [H2 | H3]]."
>
> I am curious as to whether there is something similar if the antecedent
> has a list of nested existential quantifiers.
>
> For example, consider the following:
>
> Theorem Fermat :
> (exists x, exists y, exists z, exists n,
> (n > 2) /\ (x^n + y^n = z^n)) -> False.
>
> Is there any way I can introduce x, y, z, and n into my assumptions
> *without* having to do the following?
>
> intro.
> elim H; intros.
> elim H0; intros.
> elim H1; intros.
> elim H2; intros.
Hi,
You can do the following :
intros (x,(y,(z,(n,(H,e))))).
1 subgoal
x : Z
y : Z
z : Z
n : Z
H : n > 2
e : x ^ n + y ^ n = z ^ n
============================
False
The rest of the proof is left as an exercise.
Best regards,
Pierre
> --------------------------------------------------------
> Bug reports: http://coq.inria.fr/bin/coq-bugs
> Archives: http://pauillac.inria.fr/pipermail/coq-club
> http://pauillac.inria.fr/bin/wilma/coq-club
> Info: http://pauillac.inria.fr/mailman/listinfo/coq-club
>
--
Pierre Casteran
http://www.labri.fr/Perso/~casteran/
(+33) 540006931
----------------------------------------------------------------
This message was sent using IMP, the Internet Messaging Program.
- [Coq-Club] the intros tactic and eliminating existential quantifiers, Li-Yang Tan
- Re: [Coq-Club] the intros tactic and eliminating existential quantifiers, Pierre Casteran
- Re: [Coq-Club] the intros tactic and eliminating existential quantifiers, Andrew McCreight
- Re: [Coq-Club] the intros tactic and eliminating existential quantifiers, Pierre Casteran
Archive powered by MhonArc 2.6.16.