Skip to Content.
Sympa Menu

coq-club - Re: RE : Re: [Coq-Club]extensionality and eta-conversion

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: RE : Re: [Coq-Club]extensionality and eta-conversion


chronological Thread 
  • From: roconnor AT theorem.ca
  • To: Conor McBride <ctm AT Cs.Nott.AC.UK>
  • Cc: Fabrice Lemercier <nouvid-coq AT yahoo.fr>, coq-club AT pauillac.inria.fr
  • Subject: Re: RE : Re: [Coq-Club]extensionality and eta-conversion
  • Date: Mon, 7 Aug 2006 05:52:59 -0400 (EDT)
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

On Mon, 7 Aug 2006, Conor McBride wrote:

The argument Fabrice cites from Wikipedia is valid when == is taken to be the conventional alpha-beta-eta equality of the lambda-calculus. If you pick a fresh variable x, and confirm f x == g x, that's the same deal as checking \x.f x == \x.g x. Russell's worry about bindings isn't a problem in this free-to-bound direction: if you're equal wrt the same fresh free variable, then it's trivial to pick alpha-equivalent lambda-abstractions, as done above. It's the other way where you have the trouble: if \x.f x == \y. g y, then you don't necessarily get f x == g y.

I didn't realize the lambda-calculus was so bizzare.

In Coq, I can prove (forall x:list nat, bubblesort x = quicksort x). From this I can get (bubblesort x = quicksort x) inside the context [x:list nat]. So now don't we have f x = g x for a fresh varaible x? The only constraint on x is its type, so x is as free as it is ever going to get.

--
Russell O'Connor                                      <http://r6.ca/>
``All talk about `theft,''' the general counsel of the American Graphophone
Company wrote, ``is the merest claptrap, for there exists no property in
ideas musical, literary or artistic, except as defined by statute.''





Archive powered by MhonArc 2.6.16.

Top of Page